题目内容

5.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2,在侧面PAD中,PA=PD,E为侧棱PC上不同于端点的任意一点且PA⊥DE.
(1)证明:平面PAD⊥平面ABCD;
(2)若PA∥平面BDE,求$\frac{CE}{PE}$的值.

分析 (1)推导出PA⊥平面PCD,从而PA⊥CD,再由AD⊥DC,推导出CD⊥平面PAD,由此能证明平面PAD⊥平面ABCD.
(2)连结AC,交BD于O,连结OE,推导出PA∥OE,从而$\frac{CE}{PE}=\frac{CO}{AO}$,由此能求出结果.

解答 证明:(1)∵E是侧棱PC上不同于端点的任意一点,且PA⊥DE,
∴PA⊥平面PCD,
∵CD?平面PCD,∴PA⊥CD,
∵AD⊥DC,PA∩AD=A,PA,AD?平面PAD,
∴CD⊥平面PAD,
∵CD?平面ABCD,∴平面PAD⊥平面ABCD.
解:(2)连结AC,交BD于O,连结OE,
∴平面PAD∩平面BDE于O,
∵PA∥平面BDE,PA?平面PAC,
∴PA∥OE,∴$\frac{CE}{PE}=\frac{CO}{AO}$,
∵AD∥BC,AD=2BC,
∴$\frac{CO}{AO}=\frac{CB}{AD}=\frac{1}{2}$,
∴$\frac{CE}{PE}$=$\frac{1}{2}$.

点评 本题考查面面垂直的证明,考查两线段比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网