题目内容
设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6),则a= .
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可.
解答:
解:因f(x)=a(x-5)2+6lnx,故f′(x)=2a(x-5)+
,(x>0),
令x=1,得f(1)=16a,f′(1)=6-8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),
由切线与y轴相交于点(0,6).
∴6-16a=8a-6,
∴a=
.
故答案为:
.
| 6 |
| x |
令x=1,得f(1)=16a,f′(1)=6-8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),
由切线与y轴相交于点(0,6).
∴6-16a=8a-6,
∴a=
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本小题主要考查利用导数研究曲线上某点切线方程,考查运算求解能力,属于中档题.
练习册系列答案
相关题目