题目内容
| lim |
| n→∞ |
| Sn |
| n2 |
| lim |
| n→∞ |
| 1 | ||
|
分析:直接化简分母为有理数,然后再求解数列的极限.
解答:解:
=
=
=
=
(
+1)
=
(1+1)
=
.
故选B.
| lim |
| n→∞ |
| Sn |
| n2 |
| lim |
| n→∞ |
| 1 | ||
|
=
| lim |
| n→∞ |
| ||||
(
|
=
| lim |
| n→∞ |
| ||
| 5n |
=
| 1 |
| 5 |
| lim |
| n→∞ |
1+
|
=
| 1 |
| 5 |
=
| 2 |
| 5 |
故选B.
点评:本题考查数列的极限的求法,分母有理化是本题的关键,考查计算能力.
练习册系列答案
相关题目
等差数列{an}的前n项和为Sn,已知
=-
(a1<0),则( )
| lim |
| n→∞ |
| sn |
| n2 |
| a1 |
| 9 |
| A、n=5时,Sn有最大值 |
| B、n=6时,Sn有最大值 |
| C、n=5时,Sn有最小值 |
| D、n=6时,Sn有最小值 |