题目内容
已知数列{an}满足a1=
,且an+1=
(n∈N+).
(1)证明数列{
}是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1(n∈N+),数列{bn}的前n项和记为Tn,证明:Tn<
.
| 1 |
| 2 |
| an |
| 3an+1 |
(1)证明数列{
| 1 |
| an |
(2)设bn=anan+1(n∈N+),数列{bn}的前n项和记为Tn,证明:Tn<
| 1 |
| 6 |
考点:数列的求和,等差数列的性质,数列递推式
专题:等差数列与等比数列
分析:(1)由
=
=
+3,利用定义能证明{
}是首项为2,公差为3的等差数列.从而求出an=
.
(2)bn=anan+1=
=
(
-
),由此利用裂项求和法能证明Tn<
.
| 1 |
| an+1 |
| 3an+1 |
| an |
| 1 |
| an |
| 1 |
| an |
| 1 |
| 3n-1 |
(2)bn=anan+1=
| 1 |
| (3n-1)(3n+2) |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
| 1 |
| 6 |
解答:
(1)证明:∵数列{an}满足a1=
,且an+1=
(n∈N+),
∴
=
=
+3,
∴
-
=3,又
=2,
∴{
}是首项为2,公差为3的等差数列.
∴
=2+(n-1)×3=3n-1,
∴an=
.
(2)bn=anan+1=
=
(
-
),
∴Tn=
(
-
+
-
+…+
-
)
=
(
-
)
=
-
<
.
∴Tn<
.
| 1 |
| 2 |
| an |
| 3an+1 |
∴
| 1 |
| an+1 |
| 3an+1 |
| an |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴{
| 1 |
| an |
∴
| 1 |
| an |
∴an=
| 1 |
| 3n-1 |
(2)bn=anan+1=
| 1 |
| (3n-1)(3n+2) |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n+2 |
=
| 1 |
| 6 |
| 1 |
| 3(3n+2) |
| 1 |
| 6 |
∴Tn<
| 1 |
| 6 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,注意裂项求和法的合理运用.
练习册系列答案
相关题目
函数y=x+
(x>2)的最小值为( )
| 1 |
| x-2 |
| A、1 | B、2 | C、3 | D、4 |