题目内容

已知数列{an}满足a1=
1
2
,且an+1=
an
3an+1
(n∈N+).
(1)证明数列{
1
an
}
是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1(n∈N+),数列{bn}的前n项和记为Tn,证明:Tn
1
6
考点:数列的求和,等差数列的性质,数列递推式
专题:等差数列与等比数列
分析:(1)由
1
an+1
=
3an+1
an
=
1
an
+3,利用定义能证明{
1
an
}是首项为2,公差为3的等差数列.从而求出an=
1
3n-1

(2)bn=anan+1=
1
(3n-1)(3n+2)
=
1
3
(
1
3n-1
-
1
3n+2
)
,由此利用裂项求和法能证明Tn
1
6
解答: (1)证明:∵数列{an}满足a1=
1
2
,且an+1=
an
3an+1
(n∈N+),
1
an+1
=
3an+1
an
=
1
an
+3,
1
an+1
-
1
an
=3,又
1
a1
=2

∴{
1
an
}是首项为2,公差为3的等差数列.
1
an
=2+(n-1)×3=3n-1,
an=
1
3n-1

(2)bn=anan+1=
1
(3n-1)(3n+2)
=
1
3
(
1
3n-1
-
1
3n+2
)

∴Tn=
1
3
(
1
2
-
1
5
+
1
5
-
1
8
+…+
1
3n-1
-
1
3n+2
)

=
1
3
(
1
2
-
1
3n+2
)

=
1
6
-
1
3(3n+2)
1
6

∴Tn
1
6
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网