题目内容
已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn,n∈N*.
(1)设an=(
)n,bn=1-3n,求数列{cn}的前n项和Sn;
(2)设cn=2n+4,{an}是公差为2的等差数列,若b1=1,求{bn}的通项公式;
(3)设cn=3n-25,an=n2-8n,求正整数k,使得对一切n∈N*,均有bn≥bk.
(1)设an=(
| 1 |
| 3 |
(2)设cn=2n+4,{an}是公差为2的等差数列,若b1=1,求{bn}的通项公式;
(3)设cn=3n-25,an=n2-8n,求正整数k,使得对一切n∈N*,均有bn≥bk.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)cn=-3[(
)n+1-(
)n]=
,由此能示出Sn.
(2)2n+4=2(bn+1-bn),bn+1-bn=n+2,由此推导出{bn-
(n-1)n-2n}是首项为b1-2=-1的常数数列,从而能求出bn=
+2n-1.
(3)n-25=[(n+1)2-n2-8](bn+1-bn)=(2n-7-n2)(bn+1-bn),由此求出1≤n<
时,{bn}单调递增,从而能求出bn≤b9,k=9.
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)2n+4=2(bn+1-bn),bn+1-bn=n+2,由此推导出{bn-
| 1 |
| 2 |
| (n-1)n |
| 2 |
(3)n-25=[(n+1)2-n2-8](bn+1-bn)=(2n-7-n2)(bn+1-bn),由此求出1≤n<
| 25 |
| 3 |
解答:
解:(1)∵cn=(an+1-an)(bn+1-bn),an=(
)n,bn=1-3n,
cn=-3[(
)n+1-(
)n]
=-3(
)n+1(1-3)=
,
∴Sn=
(1+
+…+
)
=
×
=1-
.
(2)由题意知:2n+4=2(bn+1-bn),
bn+1-bn=n+2,
bn+1=bn+n+2=bn+
[n(n+1)-(n-1)n]+2(n+1-n),
bn+1-
n(n+1)-2(n+1)=bn-
(n-1)n-2n,
∴{bn-
(n-1)n-2n}是首项为b1-2=-1的常数数列,
bn-
(n-1)n-2n=-1,
bn=
+2n-1.
(3)由题意得3n-25=[(n+1)2-n2-8](bn+1-bn)
=(2n-7-n2)(bn+1-bn),
n2-2n+7=(n-1)2+6≥6>0.
bn+1-bn=
=
,
1≤n<
时,bn+1-bn>0,bn+1>bn,{bn}单调递增;
1≤n≤9时,bn≤b9.
n>
时,bn+1-bn<0,bn+1<bn,{bn}单调递减.n≥9时,bn≤b9.
综合,有bn≤b9,k=9.
| 1 |
| 3 |
cn=-3[(
| 1 |
| 3 |
| 1 |
| 3 |
=-3(
| 1 |
| 3 |
| 2 |
| 3n |
∴Sn=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
=
| 2 |
| 3 |
1-
| ||
1-
|
=1-
| 1 |
| 3n |
(2)由题意知:2n+4=2(bn+1-bn),
bn+1-bn=n+2,
bn+1=bn+n+2=bn+
| 1 |
| 2 |
bn+1-
| 1 |
| 2 |
| 1 |
| 2 |
∴{bn-
| 1 |
| 2 |
bn-
| 1 |
| 2 |
bn=
| (n-1)n |
| 2 |
(3)由题意得3n-25=[(n+1)2-n2-8](bn+1-bn)
=(2n-7-n2)(bn+1-bn),
n2-2n+7=(n-1)2+6≥6>0.
bn+1-bn=
| 3n-25 |
| 2n-7-n2 |
=
3(
| ||
| (n-1)2+6 |
1≤n<
| 25 |
| 3 |
1≤n≤9时,bn≤b9.
n>
| 25 |
| 3 |
综合,有bn≤b9,k=9.
点评:本题考查数列的前n项和的求法,考查数列的通项公式的求法,考查满足条件的实数值的求法,解题时要注意数列的单调性的合理运用.
练习册系列答案
相关题目