ÌâÄ¿ÄÚÈÝ
8£®»³ö²»µÈʽ×é$\left\{\begin{array}{l}{x-y+5¡Ý0}\\{x+y¡Ý0}\\{x¡Ü3}\end{array}\right.$±íʾµÄÆ½ÃæÇøÓò£¬Éè¸ÃÆ½ÃæÇøÓòΪA£¬ÔÚ´ËÌõ¼þϽâ¾öÏÂÃæÎÊÌ⣺£¨1£©ÇóAµÄÃæ»ý£»
£¨2£©ÉèB={£¨x-y£¬x+y£©|£¨x£¬y£©¡ÊA}£¬ÇóBµÄÃæ»ý£»
£¨3£©Çóz=3x+yµÄ×îÖµ£»
£¨4£©Çóz=x2+£¨y+1£©2µÄ×îСֵ£»
£¨5£©Çóz=$\frac{y+1}{x+1}$µÄÖµÓò£»
£¨6£©Çóz=ax+y£¨a£¾1£©µÄ×î´óÖµ£®
·ÖÎö £¨1£©×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓòÇó³ö½»µã×ø±ê£¬¼´¿ÉÇóAµÄÃæ»ý£»
£¨2£©Éèm=x-y£¬n=x+y£¬×ª»¯Îª¹ØÓÚm£¬nµÄ²»µÈʽ×é¼´¿ÉÇóBµÄÃæ»ý£»
£¨3£©ÀûÓÃÖ±ÏߵĽؾ࣬¼´¿ÉÇóz=3x+yµÄ×îÖµ£»
£¨4£©¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ¼´¿ÉÇóz=x2+£¨y+1£©2µÄ×îСֵ£»
£¨5£©¸ù¾ÝÁ½µã¼äµÄбÂʹØÏµ¼´¿ÉÇóz=$\frac{y+1}{x+1}$µÄÖµÓò£»
£¨6£©¸ù¾ÝÖ±ÏߵĽؾàºÍzµÄ¹ØÏµ¼´¿ÉÇóz=ax+y£¨a£¾1£©µÄ×î´óÖµ£®
½â´ð
½â£º£¨1£©×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓòÈçͼ£¬
ÓÉ$\left\{\begin{array}{l}{x-y+5}\\{x=3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=8}\end{array}\right.$£¬¼´A£¨3£¬8£©£¬
ÓÉ$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$£¬¼´C£¨3£¬-3£©£¬
ÓÉ$\left\{\begin{array}{l}{x-y+5=0}\\{x+y=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=\frac{5}{2}}\end{array}\right.$£¬¼´B£¨-$\frac{5}{2}$£¬$\frac{5}{2}$£©£¬
Ôò|AC|=8-£¨-3£©=11£¬Bµ½Ö±Ïßx=3µÄ¾àÀëd=3-£¨-$\frac{5}{2}$£©=$\frac{11}{2}$£¬
ÔòAµÄÃæ»ýS=$\frac{1}{2}¡Á11¡Á\frac{11}{2}=\frac{121}{4}$£»
£¨2£©ÉèB={£¨x-y£¬x+y£©|£¨x£¬y£©¡ÊA}£¬ÇóBµÄÃæ»ý£»
Éèm=x-y£¬n=x+y£¬
Ôòx=$\frac{m+n}{2}$£¬y=$\frac{n-m}{2}$£¬
´ú»Ø²»µÈʽ×é$\left\{\begin{array}{l}{x-y+5¡Ý0}\\{x+y¡Ý0}\\{x¡Ü3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{m+5¡Ý0}\\{n¡Ý0}\\{\frac{m+n}{2}¡Ü3}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{m¡Ý-5}\\{n¡Ý0}\\{m+n¡Ü6}\end{array}\right.$£¬¶ÔÓ¦µÄÆ½ÃæÇøÓòΪ£º![]()
ÆäÖÐG£¨6£¬0£©£¬F£¨-5£¬0£©£¬E£¨-5£¬11£©£¬
ÔòGF=6-£¨-5£©=11£¬EF=11£¬
ÔòÈý½ÇÐÎEFGµÄÃæ»ýS=$\frac{1}{2}¡Á11¡Á11$=$\frac{121}{2}$£®
£¨3£©ÓÉz=3x+y£¬µÃy=-3x+z£¬
Æ½ÒÆÖ±Ïßy=-3x+z£¨ºÚÏߣ©£¬ÓÉͼÏó¿ÉÖªµ±Ö±Ïßy=-3x+z£¬¾¹ýµãAʱ£¬Ö±Ïßy=-3x+zµÄ½Ø¾à×î´ó£¬
´Ëʱz×î´óΪz=3¡Á3+8=9+8=17£¬
Æ½ÒÆÖ±Ïßy=-3x+z£¬ÓÉͼÏó¿ÉÖªµ±Ö±Ïßy=-3x+z£¬¾¹ýµãBʱ£¬Ö±Ïßy=-3x+zµÄ½Ø¾à×îС£¬
´Ëʱz×îСΪz=3¡Á£¨-$\frac{5}{2}$£©+$\frac{5}{2}$=-5£®
£¨4£©z=x2+£¨y+1£©2µÄ¼¸ºÎÒâÒåÎªÇøÓòÄڵĵ㵽¶¨µãE£¨0£¬-1£©µÄ¾àÀ룬
ÓÉͼÏóÖªEµ½BCµÄ¾àÀë×îС£¬´Ëʱ¾àÀëd=$\frac{|1|}{\sqrt{2}}=\frac{1}{\sqrt{2}}$£¬
ÔòzµÄ×îСֵΪz=d2=$\frac{1}{2}$£»
£¨5£©z=$\frac{y+1}{x+1}$µÄ¼¸ºÎÒâÒåÎªÇøÓòÄڵĵ㵽µãF£¨-1£¬-1£©µÄбÂÊ£¨ºìÏߣ©£¬
BFµÄбÂÊk=$\frac{\frac{5}{2}+1}{-\frac{5}{2}+1}$=-2£¬CFµÄбÂÊk=$\frac{-3+1}{3+1}=-\frac{1}{2}$£¬
¹Êz$¡Ý-\frac{1}{2}$»òz¡Ü-2£¬
¼´zµÄÖµÓòΪ{z|z$¡Ý-\frac{1}{2}$»òz¡Ü-2}£»
£¨6£©ÓÉz=ax+y£¨a£¾1£©µÃy=-ax+z£¬ÔòбÂÊk=-a£¼-1£®
Æ½ÒÆÖ±Ïßy=-ax+z£¬ÓÉͼÏóÖªµ±Ö±Ïßy=-ax+z¾¹ýµãAʱֱÏߵĽؾà×î´ó£¬´Ëʱz×î´óΪz=3a+11£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬Éæ¼°Ä¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬½áºÏÖ±ÏߵĽؾ࣬Á½µã¼äµÄбÂÊ£¬ÒÔ¼°¾àÀ빫ʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£®
| A£® | C?B?A | B£® | A?B?C | C£® | C?A=B | D£® | A=B=C |
| A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{¦Ð}{4}$»ò$\frac{5¦Ð}{4}$ | C£® | 2k¦Ð+$\frac{¦Ð}{4}$£¨k¡ÊZ£© | D£® | k¦Ð+$\frac{¦Ð}{4}$£¨k¡ÊZ£© |
| A£® | mºãΪ¸ºÊý | |
| B£® | mºãΪÕýÊý | |
| C£® | µ±d£¾0ʱ£¬mºãΪÕýÊý£»µ±d£¼0ʱ£¬mºãΪ¸ºÊý | |
| D£® | µ±d£¾0ʱ£¬mºãΪ¸ºÊý£¬µ±d£¼0ʱ£¬mºãΪÕýÊý |