题目内容

16.设$\overrightarrow{a}$=(1,2,0),$\overrightarrow{b}$=(1,0,1).则“$\overrightarrow{c}$=($\frac{2}{3}$,-$\frac{1}{3}$,-$\frac{2}{3}$)”是“$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow{c}$⊥$\overrightarrow{b}$且$\overrightarrow{c}$为单位向量”的充分不必要条件(填充要,充分不必要,必要不充分).

分析 根据向量数量积的定义和公式求出$\overrightarrow{c}$的坐标,根据充分条件和必要条件的定义进行判断即可.

解答 解:设$\overrightarrow{c}$=(x,y,z),若满足“$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow{c}$⊥$\overrightarrow{b}$且$\overrightarrow{c}$为单位向量”
则$\left\{\begin{array}{l}{\overrightarrow{c}•\overrightarrow{a}=x+2y=0}\\{\overrightarrow{c}•\overrightarrow{b}=x+z=0}\\{{x}^{2}+{y}^{2}+{z}^{2}=1}\end{array}\right.$,
即x=-2y,z=-x=2y,代入x2+y2+z2=1得4y2+y2+4y2=1,
即9y2=1,y2=$\frac{1}{9}$,
则y=$\frac{1}{3}$或$-\frac{1}{3}$,
当y=$\frac{1}{3}$时,$\overrightarrow{c}$=(-$\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$),
当y=$-\frac{1}{3}$,$\overrightarrow{c}$=($\frac{2}{3}$,-$\frac{1}{3}$,-$\frac{2}{3}$),
故“$\overrightarrow{c}$=($\frac{2}{3}$,-$\frac{1}{3}$,-$\frac{2}{3}$)”是“$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow{c}$⊥$\overrightarrow{b}$且$\overrightarrow{c}$为单位向量”的充分不必要条件,
故答案为:充分不必要

点评 本题主要考查充分条件和必要条件的判断,根据向量数量积的定义求出向量$\overrightarrow{c}$的坐标是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网