题目内容
14.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{5}(1-x),(x<1)}\\{-(x-2)^{2}+2,(x≥1)}\end{array}\right.$,则关于方程f(|x|)=a,(a∈R)实根个数不可能为( )| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由题意可得求函数y=f(|x|)的图象和直线y=a的交点个数.作出函数y=f(|x|)的图象,平移直线y=a,即可得到所求交点个数,进而得到结论.
解答
解:方程f(|x|)=a,(a∈R)实根个数
即为函数y=f(|x|)和直线y=a的交点个数.
由y=f(|x|)为偶函数,可得图象关于y轴对称.
作出函数y=f(|x|)的图象,如图,
平移直线y=a,可得它们有2个、3个、4个交点.
不可能有5个交点,即不可能有5个实根.
故选:D.
点评 本题考查方程的实根个数问题的解法,注意运用转化思想和数形结合的方法,考查判断和作图能力,属于中档题.
练习册系列答案
相关题目
4.在兴趣小组的4名男生和3名女生中选取3人参加某竞赛,要求男生女生都至少有1人,则不同的选取方法有( )种.
| A. | 20 | B. | 30 | C. | 35 | D. | 60 |
5.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50$\sqrt{3}$,那么这个三角形是( )
| A. | 等边三角形 | B. | 等腰三角形 | ||
| C. | 直角三角形 | D. | 等腰三角或直角三角形 |