题目内容
已知数列{bn}的前n项和为Sn,b1=1且点(n,Sn+n+2)在函数f(x)=log2x-1的反函数y=f-1(x)的图象上.若数列{an}满足a1=1,an=bn(| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(Ⅰ)求bn;
(Ⅱ)求证:
| an+1 |
| an+1 |
| bn |
| bn+1 |
(Ⅲ)求证:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 10 |
| 3 |
分析:(Ⅰ)由y=log2x-1,可得x=2y+1,故反函数为f-1(x)=2x+1,所以有Sn=2n+1-n-2,b1=1,再由前n项和与通项的关系求得bn=2n-1.
(Ⅱ)根据an=bn(
+
++
)(n≥2,n∈N*),可得
=
+
++
,从而有
=
+
++
+
,所以
-
=
,从而有
=
+
=
,变形可得结论.
(Ⅲ)注意讨论,当n=1时成立,当n≥2时,由(Ⅱ)知(1+
)(1+
)(1+
)••(1+
)
=
•
•
••
=
•
•
••
•an+1
=
•
•
••
•an+1
=
•
•an+1=2•
=2(
+
++
+
)=2(1+
++
)再放缩求解.
(Ⅱ)根据an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| an+1 |
| bn+1 |
| an |
| bn |
| 1 |
| bn |
| an+1 |
| bn+1 |
| an |
| bn |
| 1 |
| bn |
| an+1 |
| bn |
(Ⅲ)注意讨论,当n=1时成立,当n≥2时,由(Ⅱ)知(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
=
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| a3+1 |
| a3 |
| an+1 |
| an |
| a1+1 |
| a1a2 |
| a2+1 |
| a3 |
| a3+1 |
| a4 |
| an+1 |
| an+1 |
=
| 2 |
| 3 |
| b2 |
| b3 |
| b3 |
| b4 |
| bn |
| bn+1 |
=
| 2 |
| 3 |
| b2 |
| bn+1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2n-1 |
解答:解:(Ⅰ)令y=log2x-1,则x=2y+1,故反函数为f-1(x)=2x+1,
∴Sn+n+2=2n+1,则Sn=2n+1-n-2,b1=1,(2分)
n≥2时,Sn-1=2n-n-1,∴Sn-Sn-1=2n-1,即bn=2n-1(n≥2),b1=1满足该式,故bn=2n-1.(4分)
(Ⅱ)证明:∵an=bn(
+
++
)(n≥2,n∈N*),
∴
=
+
++
,
=
+
++
+
,
∴
-
=
,从而
=
+
=
,
∴
=
(n≥2,n∈N*).(8分)
(Ⅲ)证明;b1=1,b2=3,a1=1,a2=3,
当n=1时,左边=1+
=2<
=右边.(9分)
当n≥2时,由(Ⅱ)知(1+
)(1+
)(1+
)••(1+
)
=
•
•
••
=
•
•
••
•an+1
=
•
•
••
•an+1
=
•
•an+1=2•
=2(
+
++
+
).(11分)
而
+
++
+
=1+
++
.
当k≥2时,
=
<
=2(
-
)
∴1+
++
<1+2[(
-
)+(
-
)++(
-
)]
=1+2(
-
)<
,
∴(1+
)(1+
)(1+
)••(1+
)<
.(14分)
∴Sn+n+2=2n+1,则Sn=2n+1-n-2,b1=1,(2分)
n≥2时,Sn-1=2n-n-1,∴Sn-Sn-1=2n-1,即bn=2n-1(n≥2),b1=1满足该式,故bn=2n-1.(4分)
(Ⅱ)证明:∵an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
∴
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
∴
| an+1 |
| bn+1 |
| an |
| bn |
| 1 |
| bn |
| an+1 |
| bn+1 |
| an |
| bn |
| 1 |
| bn |
| an+1 |
| bn |
∴
| an+1 |
| an+1 |
| bn |
| bn+1 |
(Ⅲ)证明;b1=1,b2=3,a1=1,a2=3,
当n=1时,左边=1+
| 1 |
| a1 |
| 10 |
| 3 |
当n≥2时,由(Ⅱ)知(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
=
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| a3+1 |
| a3 |
| an+1 |
| an |
| a1+1 |
| a1a2 |
| a2+1 |
| a3 |
| a3+1 |
| a4 |
| an+1 |
| an+1 |
=
| 2 |
| 3 |
| b2 |
| b3 |
| b3 |
| b4 |
| bn |
| bn+1 |
=
| 2 |
| 3 |
| b2 |
| bn+1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
而
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2n-1 |
当k≥2时,
| 1 |
| 2k-1 |
| 2k+1-1 |
| (2k-1)(2k+1-1) |
| 2k+1 |
| (2k-1)(2k+1-1) |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
∴1+
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 23-1 |
| 1 |
| 24-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
=1+2(
| 1 |
| 3 |
| 1 |
| 2n+1-1 |
| 5 |
| 3 |
∴(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 10 |
| 3 |
点评:本题主要考查数列与函数,不等式的综合运用,主要涉及了求反函数,数列前n项和与通项的关系以及放缩法,裂项法等.
练习册系列答案
相关题目