题目内容

已知数列{bn}的前n项和为Sn,b1=1且点(n,Sn+n+2)在函数f(x)=log2x-1的反函数y=f-1(x)的图象上.若数列{an}满足a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
) (n≥2,n∈N*)

(Ⅰ)求bn
(Ⅱ)求证:
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)

(Ⅲ)求证:(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)•…•(1+
1
an
)<
10
3
分析:(Ⅰ)由y=log2x-1,可得x=2y+1,故反函数为f-1(x)=2x+1,所以有Sn=2n+1-n-2,b1=1,再由前n项和与通项的关系求得bn=2n-1.
(Ⅱ)根据an=bn(
1
b1
+
1
b2
++
1
bn-1
)(n≥2,n∈N*)
,可得
an
bn
=
1
b1
+
1
b2
++
1
bn-1
,从而有
an+1
bn+1
=
1
b1
+
1
b2
++
1
bn-1
+
1
bn
,所以
an+1
bn+1
-
an
bn
=
1
bn
,从而有
an+1
bn+1
=
an
bn
+
1
bn
=
an+1
bn
,变形可得结论.
(Ⅲ)注意讨论,当n=1时成立,当n≥2时,由(Ⅱ)知(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)••(1+
1
an
)

=
a1+1
a1
a2+1
a2
a3+1
a3
••
an+1
an
=
a1+1
a1a2
a2+1
a3
a3+1
a4
••
an+1
an+1
an+1

=
2
3
b2
b3
b3
b4
••
bn
bn+1
an+1

=
2
3
b2
bn+1
an+1=2•
an+1
bn+1
=2(
1
b1
+
1
b2
++
1
bn-1
+
1
bn
)
=2(1+
1
3
++
1
2n-1
)再放缩求解.
解答:解:(Ⅰ)令y=log2x-1,则x=2y+1,故反函数为f-1(x)=2x+1
∴Sn+n+2=2n+1,则Sn=2n+1-n-2,b1=1,(2分)
n≥2时,Sn-1=2n-n-1,∴Sn-Sn-1=2n-1,即bn=2n-1(n≥2),b1=1满足该式,故bn=2n-1.(4分)
(Ⅱ)证明:∵an=bn(
1
b1
+
1
b2
++
1
bn-1
)(n≥2,n∈N*)

an
bn
=
1
b1
+
1
b2
++
1
bn-1
an+1
bn+1
=
1
b1
+
1
b2
++
1
bn-1
+
1
bn

an+1
bn+1
-
an
bn
=
1
bn
,从而
an+1
bn+1
=
an
bn
+
1
bn
=
an+1
bn

an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)
.(8分)
(Ⅲ)证明;b1=1,b2=3,a1=1,a2=3,
当n=1时,左边=1+
1
a1
=2<
10
3
=右边.(9分)
当n≥2时,由(Ⅱ)知(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)••(1+
1
an
)

=
a1+1
a1
a2+1
a2
a3+1
a3
••
an+1
an
=
a1+1
a1a2
a2+1
a3
a3+1
a4
••
an+1
an+1
an+1

=
2
3
b2
b3
b3
b4
••
bn
bn+1
an+1

=
2
3
b2
bn+1
an+1=2•
an+1
bn+1
=2(
1
b1
+
1
b2
++
1
bn-1
+
1
bn
)
.(11分)
1
b1
+
1
b2
++
1
bn-1
+
1
bn
=1+
1
3
++
1
2n-1

当k≥2时,
1
2k-1
=
2k+1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
=2(
1
2k-1
-
1
2k+1-1
)

1+
1
3
++
1
2n-1
<1+2[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)++(
1
2n-1
-
1
2n+1-1
)]

=1+2(
1
3
-
1
2n+1-1
)<
5
3

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)••(1+
1
an
)<
10
3
.(14分)
点评:本题主要考查数列与函数,不等式的综合运用,主要涉及了求反函数,数列前n项和与通项的关系以及放缩法,裂项法等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网