题目内容
已知等差数列1,a,b,等比数列3,a+2,b+5.
求:
(1)以1,a,b为前三项的等差数列{an}的通项公式;
(2)已知数列{bn}的前n项和为Tn,且其通项bn=
,求Tn.
求:
(1)以1,a,b为前三项的等差数列{an}的通项公式;
(2)已知数列{bn}的前n项和为Tn,且其通项bn=
| 1 | anan+1 |
分析:(1)依题意
,可求得a,b,从而可求得1,a,b为前三项的等差数列为1,4,7,继而可求得an;
(2)2)由裂项法可求得bn=
(
-
),再用累加法可求得其前n项和Tn.
|
(2)2)由裂项法可求得bn=
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
解答:解:(1)由题意得:
,解得a=4或-2(舍去),
∴a=4,b=7.
∴以1,a,b为前三项的等差数列为1,4,7,公差d=4-1=3,
∴an=3n-2.
(2)∵bn=
=
=
(
-
),
∴Tn=b1+b2+b3+…+bn
=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
|
∴a=4,b=7.
∴以1,a,b为前三项的等差数列为1,4,7,公差d=4-1=3,
∴an=3n-2.
(2)∵bn=
| 1 |
| anan+1 |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Tn=b1+b2+b3+…+bn
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
=
| n |
| 3n+1 |
点评:本题考查等差数列的通项公式与数列求和,着重考查等差数列的通项公式的引用与裂项法求和,属于中档题.
练习册系列答案
相关题目
已知等差数列1,a,b,等比数列3,a+2,b+5,则该等差数列的公差为( )
| A、3或-3 | B、3或-1 | C、3 | D、-3 |