题目内容

20.如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中$∠B=\frac{π}{2},AB=a,BC=\sqrt{3}a$.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A'MN).现考虑方便和绿地最大化原则,要求点M与点A,B均不重合,A'落在边BC上且不与端点B,C重合,设∠AMN=θ.
(1)若$θ=\frac{π}{3}$,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求AN,A'N的长度最短,求此时绿地公共走道MN的长度.

分析 (1)由题意可知A=$\frac{π}{3}$,故△AMN为等边三角形,根据BM与AM的关系得出AM,代入面积公式计算;
(2)用θ 表示出AM,利用正弦定理得出AN关于θ的函数,利用三角恒等变换求出AN取得最小值对应的θ值,再计算MN的长.

解答 解:(1)∵△AMN≌△A'MN,∴∠AMN=∠A′MN=$\frac{π}{3}$,
∴∠BMA′=$\frac{π}{3}$,∴BM=$\frac{1}{2}$A′M=$\frac{1}{2}$AM.
∴AM=$\frac{2}{3}AB$=$\frac{2}{3}a$,
∵AB=a,BC=$\sqrt{3}a$,∠B=$\frac{π}{2}$,∴∠A=$\frac{π}{3}$,
∴△AMN是等边三角形,
∴S=2S△AMN=2×$\frac{\sqrt{3}}{4}×$$\frac{4{a}^{2}}{9}$=$\frac{2\sqrt{3}{a}^{2}}{9}$.
(2)∵∠BMA′=π-2θ,AM=A′M,
∴BM=A′Mcos∠BMA′=-AMcos2θ.
∵AM+BM=a,即AM(1-cos2θ)=a,
∴AM=$\frac{a}{1-cos2θ}$=$\frac{a}{2si{n}^{2}θ}$.
在△AMN中,由正弦定理可得:$\frac{AN}{sinθ}=\frac{AM}{{sin(π-\frac{π}{3}-θ)}}$,
∴$AN=\frac{AMsinθ}{{sin(\frac{2π}{3}-θ)}}=\frac{a}{{2sinθsin(\frac{2π}{3}-θ)}}$,
令f(θ)=2sinθsin($\frac{2π}{3}$-θ)=2sinθ($\frac{\sqrt{3}}{2}$cosθ+$\frac{1}{2}$sinθ)=$\frac{\sqrt{3}}{2}$sin2θ+$\frac{1-cos2θ}{2}$=sin(2θ-$\frac{π}{6}$)+$\frac{1}{2}$.
∵$θ∈(\frac{π}{4},\frac{π}{2})$,∴当$2θ-\frac{π}{6}=\frac{π}{2}$即$θ=\frac{π}{3}$时f(θ)取最大值,
∴当θ=$\frac{π}{3}$时AN最短,此时△AMN是等边三角形,$MN=AM=\frac{2}{3}a$.

点评 本题考查了解三角形的实际应用,正弦定理及三角恒等变换,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网