题目内容
(2008•南京二模)已知复数z1=a+i,z2=1-i,若z1•z2是纯虚数,则实数a的值为
-1
-1
.分析:根据 z1•z2=a+1+(1-a)i,且z1•z2是纯虚数,可得a+1=0,由此求得实数a的值.
解答:解:∵z1•z2=(a+i)(1-i)=a+1+(1-a)i,且z1•z2是纯虚数,
故有 a+1=0,∴a=-1.
故答案为:-1.
故有 a+1=0,∴a=-1.
故答案为:-1.
点评:本题主要考查复数的基本概念,两个复数代数形式的乘法,属于基础题.
练习册系列答案
相关题目