题目内容
已知的周长为,面积为,则的内切圆半径为 .将此结论类比到空间,已知四面体的表面积为,体积为,则四面体的内切球的半径 .
;
设l,m,n表示不同的直线,α、β、γ表示不同的平面,给出下列四个命题:
①若m∥l,且m⊥α,则l⊥α; ②若m∥l,且m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且nβ,则l∥m.
其中正确命题的个数是
A.2 B.1 C.3 D.4
定义:若在上为增函数,则称为“k次比增函数”,其中. 已知,其中e为自然对数的底数.
(1)若是“1次比增函数”,求实数a的取值范围;
(2)当时,求函数在上的最小值;
(3)求证:.
求曲线y=2x-x2,y=2x2-4x所围成图形的面积.
若,则的值为 .
已知,,
,则的值为__ ___
命题“”的否定是 .
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中, 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
⑴求的值;
⑵若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
已知在等比数列
(1)若数列满足,求数列的通项公式;
(2)求数列的前n项和.