题目内容

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且$asinB-\sqrt{3}bcosA=0$.
(1)若cosC=$\frac{4}{5}$,求cos(A+C);
(2)若b+c=5,A=$\sqrt{7}$,求△ABC的面积.

分析 (1)使用正弦定理将边化角,得出A,使用两角和的余弦公式计算;
(2)使用余弦定理求出bc,代入面积公式计算.

解答 解:(1)∵$asinB-\sqrt{3}bcosA=0$,∴sinAsinB-$\sqrt{3}$sinBcosA=0,
∵sinB≠0,∴sinA-$\sqrt{3}$cosA=0,即tanA=$\sqrt{3}$.
∴A=$\frac{π}{3}$.
∵cosC=$\frac{4}{5}$,∴sinC=$\frac{3}{5}$.
∴cos(A+C)=cosAcosC-sinAsinC=$\frac{1}{2}×\frac{4}{5}-\frac{\sqrt{3}}{2}×\frac{3}{5}$=$\frac{4-3\sqrt{3}}{10}$.
(2)由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-7}{2bc}=\frac{(b+c)^{2}-2bc-7}{2bc}$=$\frac{18-2bc}{2bc}=\frac{1}{2}$,
∴bc=6.
∴S△ABC=$\frac{1}{2}bc$sinA=$\frac{1}{2}×6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.

点评 本题考查了三角函数的恒等变换,正余弦定理的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网