题目内容

14.曲线y=a$\sqrt{x}$(a>0)与曲线y=ln$\sqrt{x}$有公共点,且在公共点处的切线相同,则a的值为(  )
A.eB.e2C.$\frac{1}{{e}^{2}}$D.$\frac{1}{e}$

分析 设出公共点的坐标,求出函数的导数,利用导数的几何意义建立方程关系进行求解即可.

解答 解:y=ln$\sqrt{x}$=$\frac{1}{2}$lnx,
设公共点的坐标为(m,$\frac{1}{2}$lnm),
则函数y=f(x)=a$\sqrt{x}$(a>0)的导数f′(x)=$\frac{a}{2\sqrt{x}}$,曲线y=g(x)=$\frac{1}{2}$lnx的导数g′(x)=$\frac{1}{2x}$,
则f′(m)=$\frac{a}{2\sqrt{m}}$,g′(m)=$\frac{1}{2m}$,
则由f′(m)=g′(m),得$\frac{a}{2\sqrt{m}}$=$\frac{1}{2m}$,(m>0),
则a=$\frac{1}{\sqrt{m}}$,
又a$\sqrt{m}$=ln$\sqrt{m}$,
即ln$\sqrt{m}$=1,得$\sqrt{m}$=e,则a=$\frac{1}{\sqrt{m}}$=$\frac{1}{e}$,
故选:D.

点评 本题主要考查导数的几何意义,求函数的导数,建立方程关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网