题目内容
设数列{an}满足:a1=1,an+1=
(1+4an+
)(n∈N*).令bn=
.
(1)求证数列{bn-3}是等比数列并求数列{bn}的通项公式;
(2)已知f(n)=6an+1-3an,求证:f(1)•f(2)•…•f(n)>
.
| 1 |
| 16 |
| 1+24an |
| 1+24an |
(1)求证数列{bn-3}是等比数列并求数列{bn}的通项公式;
(2)已知f(n)=6an+1-3an,求证:f(1)•f(2)•…•f(n)>
| 1 |
| 2 |
分析:(1)由bn=
,得an=
,代入an+1=
(1+4an+
)(n∈N*),可得2bn+1=bn+3,从而可得{bn-3}是首项为2,公比为
的等比数列,由此可求数列{bn}的通项公式;
(2)法一:先求数列{an}的通项公式,利用f(n)=6an+1-3an,借助于放缩法,即可证得结论;
法二:利用(1+
)(1-
)=1+
-
>1,进行放缩,即可证得结论;
| 1+24an |
| ||
| 24 |
| 1 |
| 16 |
| 1+24an |
| 1 |
| 2 |
(2)法一:先求数列{an}的通项公式,利用f(n)=6an+1-3an,借助于放缩法,即可证得结论;
法二:利用(1+
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 22n-1 |
解答:证明:(1)由bn=
,得an=
,代入an+1=
(1+4an+
)(n∈N*)得
=
(1+4×
+bn),∴4
=(bn+3)2,
∴2bn+1=bn+3,∴2(bn+1-3)=bn-3,
∴{bn-3}是首项为2,公比为
的等比数列
∴bn-3=2×(
)n-1,∴bn=(
)n-2+3
(2)法一:由(2)得an=
[(
)n-2+3]2-
=
•(
)n+(
)n+
∴f(n)=
+
+2-
-
-1=1-
∵1-
=
=
=
>
∴f(1)•f(2)•…•f(n)=(1-
)(1-
)…(1-
)>
•
•…•
=
>
法二:同理由f(n)=1-
=(1-
)(1+
)
∵(1+
)(1-
)=1+
-
>1
∴f(1)•f(2)…f(n)=(1-
)(1+
)(1-
)(1+
)…(1+
)(1-
)(1+
)>(1-
)1•1•…1•(1+
)>
| 1+24an |
| ||
| 24 |
| 1 |
| 16 |
| 1+24an |
| ||
| 24 |
| 1 |
| 16 |
| ||
| 24 |
| b | 2 n+1 |
∴2bn+1=bn+3,∴2(bn+1-3)=bn-3,
∴{bn-3}是首项为2,公比为
| 1 |
| 2 |
∴bn-3=2×(
| 1 |
| 2 |
| 1 |
| 2 |
(2)法一:由(2)得an=
| 1 |
| 24 |
| 1 |
| 2 |
| 1 |
| 24 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
∴f(n)=
| 1 |
| 4n |
| 3 |
| 2n |
| 2 |
| 4n |
| 3 |
| 2n |
| 1 |
| 4n |
∵1-
| 1 |
| 4n |
(1-
| ||||
1+
|
1+
| ||||||
1+
|
1+
| ||||||
1+
|
1+
| ||
1+
|
∴f(1)•f(2)•…•f(n)=(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
1+
| ||
| 1+1 |
1+
| ||
1+
|
1+
| ||
1+
|
1+
| ||
| 2 |
| 1 |
| 2 |
法二:同理由f(n)=1-
| 1 |
| 4n |
| 1 |
| 2n |
| 1 |
| 2n |
∵(1+
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 22n-1 |
∴f(1)•f(2)…f(n)=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2 |
点评:本题考查等比数列的证明,考查数列的通项,考查不等式的证明,适当放缩是关键.
练习册系列答案
相关题目