题目内容
16.已知数列{an}的前n项和Sn=an+n2-1,数列{bn}满足3nbn+1=(n+1)an+1-nan,且b1=3,a1=3.(1)求数列{ an }和{bn}的通项an,bn;
(2)设Tn为数列{bn}的前n项和,求Tn,并求满足Tn<7时n的最大值.
分析 (1)Sn=an+n2-1,当n≥2时,an=Sn-Sn-1,n=1时满足上式,可得an=2n+1.3nbn+1=(n+1)an+1-nan,可得bn+1=$\frac{1}{{3}^{n}}$[(n+1)an+1-nan]=(4n+3)•$\frac{1}{{3}^{n}}$,又b1=3满足上式,可得bn=(4n-1)•$\frac{1}{{3}^{n-1}}$.
(2)利用错位相减法与等比数列的求和公式可得Tn.可得Tn-Tn+1<0.即可得出.
解答 解:(1)∵Sn=an+n2-1,
∴当n≥2时,an=Sn-Sn-1=(an+n2-1)-[an-1+(n-1)2-1],化为:an-1=2n-1,
又∵a1=1+2=3满足上式,
∴an=2n+1,
∵3nbn+1=(n+1)an+1-nan,
∴bn+1=$\frac{1}{{3}^{n}}$[(n+1)an+1-nan]=$\frac{1}{{3}^{n}}$[(n+1)(2n+3)-n(2n+1)]=(4n+3)•$\frac{1}{{3}^{n}}$,
又∵b1=3满足上式,
∴bn=(4n-1)•$\frac{1}{{3}^{n-1}}$.
(2)由(1)可知,Tn=3•1+7•$\frac{1}{3}$+11•$\frac{1}{{3}^{2}}$+…+(4n-1)•$\frac{1}{{3}^{n-1}}$,
$\frac{1}{3}$Tn=3•$\frac{1}{3}$+7•$\frac{1}{{3}^{2}}$+…+(4n-5)•$\frac{1}{{3}^{n-1}}$+(4n-1)•$\frac{1}{{3}^{n}}$,
错位相减得:$\frac{2}{3}$Tn=3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$,
∴Tn=$\frac{3}{2}$[3+4×$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,
Tn-Tn+1=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$-$(\frac{15}{2}-\frac{1}{2}•\frac{4n+9}{{3}^{n}})$=$\frac{-(4n+3)}{{3}^{n}}$<0.
∴Tn<Tn+1,即{Tn}为递增数列.
又T3=$\frac{59}{9}$<7,T4=$\frac{64}{9}$>7,
∴Tn<7时,n的最大值为3.
点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于难题.
| A. | f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递增 | B. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递增 | ||
| C. | f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递减 | D. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递减 |
| A. | 一解 | B. | 两解 | C. | 无解 | D. | 不能确定 |