ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²CµÄÖÐÐÄΪԵ㣬½¹µãF1£¬F2ÔÚ×ø±êÖáÉÏ£¬ÆäÀëÐÄÂÊΪ
£¬ÇÒÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÍÖÔ²C¹ýµã£¨0£¬
£©£¬PÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÔÚµãP´¦×÷ÍÖÔ²CµÄÇÐÏßl£¬F1£¬F2µ½lµÄ¾àÀë·Ö±ðΪd1£¬d2£®Ì½¾¿£ºd1•d2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¶¨Öµ£»Èô²»ÊÇ˵Ã÷ÀíÓÉ£¨Ìáʾ£ºÍÖÔ²mx2+ny2=1ÔÚÆäÉÏÒ»µã£¨x0£¬y0£©´¦µÄÇÐÏß·½³ÌÊÇmx0x+ny0y=1£©£»
£¨3£©Çó£¨2£©ÖÐd1+d2µÄȡֵ·¶Î§£®
| ||
| 2 |
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÍÖÔ²C¹ýµã£¨0£¬
| ||
| 2 |
£¨3£©Çó£¨2£©ÖÐd1+d2µÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÓÉÌ⣬
=
=
⇒(
)2=
£¬ÀûÓÃÍÖÔ²CÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£¬·ÖÀàÌÖÂÛÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©È·¶¨ÍÖÔ²C·½³ÌΪx2+2y2=1£¬ÉèP£¨m£¬n£©£¬ÔòlµÄ·½³ÌÊÇmx+2ny=1£¬Çó³öd1•d2£¬½áºÏm2+2n2=1£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÏÈ»¯¼òd1+d2£¬ÔÙÇód1+d2µÄȡֵ·¶Î§£®
| c |
| a |
1-(
|
| ||
| 2 |
| b |
| a |
| 1 |
| 2 |
£¨2£©È·¶¨ÍÖÔ²C·½³ÌΪx2+2y2=1£¬ÉèP£¨m£¬n£©£¬ÔòlµÄ·½³ÌÊÇmx+2ny=1£¬Çó³öd1•d2£¬½áºÏm2+2n2=1£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÏÈ»¯¼òd1+d2£¬ÔÙÇód1+d2µÄȡֵ·¶Î§£®
½â´ð£º
½â£º£¨1£©ÓÉÌ⣬
=
=
⇒(
)2=
£¬
ÒòΪÍÖÔ²CÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£¬Ôò
Èôa=1£¬Ôòb2=
£¬ÔòÍÖÔ²C·½³ÌΪx2+2y2=1£»
Èôb=1£¬Ôòa2=2£¬ÔòÍÖÔ²C·½³ÌΪx2+
=1£®
¹ÊËùÇóΪx2+
=1»òx2+
=1£»
£¨2£©ÒòΪÍÖÔ²C¹ýµã(0£¬
)£¬¹ÊÍÖÔ²C·½³ÌΪx2+2y2=1£¬ÇÒF1(-
£¬0)£¬F2(
£¬0)
ÉèP£¨m£¬n£©£¬ÔòlµÄ·½³ÌÊÇmx+2ny=1£¬
Ôòd1•d2=
=
£¬
ÒòΪ-1¡Üm¡Ü1£¬ËùÒÔ1-
m2£¾0£¬
¹Êd1•d2=
£¬
ÓÖÒòΪm2+2n2=1£¬´úÈë¿ÉµÃd1d2=
£¬¹Êd1•d2Ϊ¶¨Öµ
£»
£¨3£©ÓÉÌâd1+d2=
+
=
=
=
ÒòΪ0¡Ün2¡Ü
£¬ËùÒÔd1+d2¡Ê[
£¬2]£®
| c |
| a |
1-(
|
| ||
| 2 |
| b |
| a |
| 1 |
| 2 |
ÒòΪÍÖÔ²CÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£¬Ôò
Èôa=1£¬Ôòb2=
| 1 |
| 2 |
Èôb=1£¬Ôòa2=2£¬ÔòÍÖÔ²C·½³ÌΪx2+
| y2 |
| 2 |
¹ÊËùÇóΪx2+
| y2 | ||
|
| y2 |
| 2 |
£¨2£©ÒòΪÍÖÔ²C¹ýµã(0£¬
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
ÉèP£¨m£¬n£©£¬ÔòlµÄ·½³ÌÊÇmx+2ny=1£¬
Ôòd1•d2=
|-
| ||||
|
|
| ||||
|
|1-
| ||
| m2+4n2 |
ÒòΪ-1¡Üm¡Ü1£¬ËùÒÔ1-
| 1 |
| 2 |
¹Êd1•d2=
1-
| ||
| m2+4n2 |
ÓÖÒòΪm2+2n2=1£¬´úÈë¿ÉµÃd1d2=
| 1 |
| 2 |
| 1 |
| 2 |
£¨3£©ÓÉÌâd1+d2=
|-
| ||||
|
|
| ||||
|
1+
| ||||||||
|
| 2 | ||
|
| 2 | ||
|
ÒòΪ0¡Ün2¡Ü
| 1 |
| 2 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éµãµ½Ö±Ïß¾àÀ빫ʽµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁк¯ÊýÖУ¬ÔÚÇø¼ä£¨1£¬+¡Þ£©ÉÏΪÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A¡¢y=2x-1 | ||
B¡¢y=
| ||
| C¡¢y=-£¨x-1£©2 | ||
D¡¢y=log
|
¡°a=1¡±ÊÇ¡°Ö±Ïßax+y=1ÓëÖ±Ïßx+ay=2ƽÐС±µÄ£¨¡¡¡¡£©
| A¡¢³ä·Ö¶ø²»±ØÒªÌõ¼þ |
| B¡¢±ØÒª¶ø²»³ä·ÖÌõ¼þ |
| C¡¢³äÒªÌõ¼þ |
| D¡¢¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |