ÌâÄ¿ÄÚÈÝ

ÒÑÖªÍÖÔ²CµÄÖÐÐÄΪԭµã£¬½¹µãF1£¬F2ÔÚ×ø±êÖáÉÏ£¬ÆäÀëÐÄÂÊΪ
2
2
£¬ÇÒÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÍÖÔ²C¹ýµã£¨0£¬
2
2
£©£¬PÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÔÚµãP´¦×÷ÍÖÔ²CµÄÇÐÏßl£¬F1£¬F2µ½lµÄ¾àÀë·Ö±ðΪd1£¬d2£®Ì½¾¿£ºd1•d2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¶¨Öµ£»Èô²»ÊÇ˵Ã÷ÀíÓÉ£¨Ìáʾ£ºÍÖÔ²mx2+ny2=1ÔÚÆäÉÏÒ»µã£¨x0£¬y0£©´¦µÄÇÐÏß·½³ÌÊÇmx0x+ny0y=1£©£»
£¨3£©Çó£¨2£©ÖÐd1+d2µÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÓÉÌ⣬
c
a
=
1-(
b
a
)
2
=
2
2
⇒(
b
a
)2=
1
2
£¬ÀûÓÃÍÖÔ²CÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£¬·ÖÀàÌÖÂÛÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©È·¶¨ÍÖÔ²C·½³ÌΪx2+2y2=1£¬ÉèP£¨m£¬n£©£¬ÔòlµÄ·½³ÌÊÇmx+2ny=1£¬Çó³öd1•d2£¬½áºÏm2+2n2=1£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÏÈ»¯¼òd1+d2£¬ÔÙÇód1+d2µÄȡֵ·¶Î§£®
½â´ð£º ½â£º£¨1£©ÓÉÌ⣬
c
a
=
1-(
b
a
)
2
=
2
2
⇒(
b
a
)2=
1
2
£¬
ÒòΪÍÖÔ²CÓëxÖáµÄÒ»¸ö½»µãΪ£¨1£¬0£©£¬Ôò
Èôa=1£¬Ôòb2=
1
2
£¬ÔòÍÖÔ²C·½³ÌΪx2+2y2=1£»
Èôb=1£¬Ôòa2=2£¬ÔòÍÖÔ²C·½³ÌΪx2+
y2
2
=1
£®
¹ÊËùÇóΪx2+
y2
1
2
=1
»òx2+
y2
2
=1
£»
£¨2£©ÒòΪÍÖÔ²C¹ýµã(0£¬
2
2
)
£¬¹ÊÍÖÔ²C·½³ÌΪx2+2y2=1£¬ÇÒF1(-
2
2
£¬0)£¬F2(
2
2
£¬0)

ÉèP£¨m£¬n£©£¬ÔòlµÄ·½³ÌÊÇmx+2ny=1£¬
Ôòd1d2=
|-
2
2
m-1|
m2+4n2
|
2
2
m-1|
m2+4n2
=
|1-
1
2
m2|
m2+4n2
£¬
ÒòΪ-1¡Üm¡Ü1£¬ËùÒÔ1-
1
2
m2£¾0
£¬
¹Êd1d2=
1-
1
2
m2
m2+4n2
£¬
ÓÖÒòΪm2+2n2=1£¬´úÈë¿ÉµÃd1d2=
1
2
£¬¹Êd1•d2Ϊ¶¨Öµ
1
2
£»
£¨3£©ÓÉÌâd1+d2=
|-
2
2
m-1|
m2+4n2
+
|
2
2
m-1|
m2+4n2
=
1+
2
2
m+1-
2
2
m
m2+4n2
=
2
m2+4n2
=
2
1+2n2

ÒòΪ0¡Ün2¡Ü
1
2
£¬ËùÒÔd1+d2¡Ê[
2
£¬2]
£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éµãµ½Ö±Ïß¾àÀ빫ʽµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø