题目内容

(1)已知抛物线y2=2Px(P>0),过焦点F的动直线l交抛物线于A,B两点,O为坐标原点,求证:·为定值;

(2)由(1)可知:过抛物线的焦点F的动直线l交抛物线于A,B两点,存在定点P,使得·为定值.请写出关于椭圆的类似结论,并给出证明.

(1)证法一:若直线l垂直于x轴,则A(,p),B(,-p).

·=()2-p2=-.                                                                              ?

若直线l不垂直于x轴,设其方程为y=k(x-),A(x1,y1),B(x2,y2),?

k2x2-p(2+k2)x+k2=0.?

x1+x2=,x1x2=.                                                                                 ?

·=x1x2+y1y2=x1x2+k2(x1-)(x2-)??

=(1+k2)x1x2-k2(x1+x2)+?

=(1+k2)-·+=-.?

综上,·=-为定值.                                                                          ?

证法二:设直线l的方程为x=my+,A(x1,y1),B(x2,y2).                                        ?

y2-2pmy-p2=0.?

y1+y2=2pm,y1y2=-p2.                                                                                             ?

·=x1x2+y1y2=(my1+)(my2+)+y1y2?

=(1+m2)y1y2+my1+y2)+ ?

=(1+m2)(-p2)-·2pm=-.?

·=-为定值.                                                                               ?

(2)解:关于椭圆有类似的结论:过椭圆=1(AB>0)的一个焦点F的动直线l交椭圆于A,B两点,存在定点P,使·为定值.                                                           ?

证明:不妨设直线l过椭圆=1的右焦点F(c,0)(其中c=).

若直线l不垂直于x轴,则设其方程为y=k(x-c),A(x1,y1),B(x2,y2).?

得(A2k2+B2)x2-2A2CK2x+(A2c2k2-A2B2)=0.?

所以x1+x2=,x1x2=.                                                          ?

由对称性可知,设点Px轴上,其坐标为(M,0).?

所以·=(x1-M)(x2-M)+y1y2?

=(1+k2)x1x2-(M+CK2)(x1+x2)+?M2+c2k2??

=(1+k2)-(M+CK2)+M2+c2k2?

=.?

要使·为定值,只要A4-A2B2-B4+A2M2-2A2cM=A2(M2-A2)?,

M===.?

此时·=M2-A2==.                                      ?

若直线l垂直于x轴,则其方程为x=c,A(c,),B(c,-).?

取点P(,0),?

·=[-c2-=.                                       ?

综上,过焦点F(c,0)的任意直线l交椭圆于A,B两点,存在定点P(,0),

使·=为定值.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网