题目内容
11.已知抛物线y2=8x焦点与双曲线$\frac{x^2}{a^2}-{y^2}=1$(a>0)的右焦点重合,则此双曲线的离心率是( )| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $2\sqrt{3}$ |
分析 求出抛物线的焦点坐标,得到双曲线的焦点坐标,然后求解即可.
解答 解:抛物线y2=8x焦点(2,0)与双曲线$\frac{x^2}{a^2}-{y^2}=1$(a>0)的右焦点(2,0)重合,
可得c=2,b=1,a2+1=22.
可得a=$\sqrt{3}$,
离心率为:$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
故选:A.
点评 本题考查抛物线的简单性质的应用,双曲线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
17.
已知集合A={x|-$\sqrt{3}$≤x$\sqrt{3}$},B={x|-3≤x≤1},且A,B都是全集U的子集,则Venn图中阴影部分表示的集合为( )
| A. | {x|-$\sqrt{3}≤x≤1$} | B. | {x|-3≤x≤1} | C. | {x|-3$≤x≤-\sqrt{3}$} | D. | {x|1$≤x≤\sqrt{3}$} |
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的两条渐近线的夹角为$\frac{π}{3}$,则双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\sqrt{3}$ | D. | 2 |
3.若函数f(x)=$\left\{\begin{array}{l}{x+{3}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+a(x>0)}\end{array}\right.$在定义域上只有一个零点,则实数a的取值范围是( )
| A. | a>$\frac{16}{3}$ | B. | a<$\frac{16}{3}$ | C. | a≥$\frac{16}{3}$ | D. | a≤$\frac{16}{3}$ |