题目内容
11.若sinα=$\frac{\sqrt{10}}{10}$,β=arccos(-$\frac{\sqrt{5}}{5}$),0<α<$\frac{π}{2}$,求证:α+β=$\frac{3π}{4}$.分析 先由得:β=arccos(-$\frac{\sqrt{5}}{5}$),得到cosβ=-$\frac{\sqrt{5}}{5}$,$\frac{π}{2}$<β<π,再利用同角三角函数的基本关系和α、β的范围,求得cosα和cosβ的值,进而利用余弦函数的两角和公式求得答案.
解答 证明:∵sinα=$\frac{\sqrt{10}}{10}$<$\frac{1}{2}$<sin$\frac{π}{6}$,0<α<$\frac{π}{2}$,
∴0<α<$\frac{π}{6}$
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3\sqrt{10}}{10}$,
∵β=arccos(-$\frac{\sqrt{5}}{5}$),
∴cosβ=-$\frac{\sqrt{5}}{5}$,$\frac{π}{2}$<β<π,
∴sinβ=$\sqrt{1-si{n}^{2}β}$=$\frac{2\sqrt{5}}{5}$
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{3\sqrt{10}}{10}$×(-$\frac{\sqrt{5}}{5}$)-$\frac{\sqrt{10}}{10}$×$\frac{2\sqrt{5}}{5}$=-$\frac{\sqrt{2}}{2}$,
∵0<α+β<$\frac{7π}{6}$
∴α+β=$\frac{3π}{4}$.
点评 本题主要考查了反三角函数的运用、同角三角函数的基本关系的应用和两角和公式求值.重点考查了三角函数基础知识的运用.属于中档题.
练习册系列答案
相关题目
1.已知实数x、y满足条件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{ax+y+5≥0}\end{array}\right.$,若目标函数z=3x+y的最小值为5,则a的值为( )
| A. | -17 | B. | -2 | C. | 2 | D. | 17 |
6.已知函数f(x)=-$\frac{{x}^{2}+4x+7}{x+1}$,g(x)=lnx-$\frac{1}{2}$x2+$\frac{7}{2}$,实数a,b满足a<b<-1,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,则b-a的最大值为( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 3 |
20.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+4x,x≤0\\ xlnx,x>0\end{array}$,g(x)=kx-1,若函数y=f(x)-g(x)有且仅有4个不同的零点.则实数k的取值范围为( )
| A. | (1,6) | B. | (0,1) | C. | (1,2) | D. | (2,+∞) |
1.若a,b均为大于1的正数,且ab=100,则(lga)2+(lgb)2的最小值是( )
| A. | 1 | B. | 2 | C. | $\frac{5}{2}$ | D. | 10 |