题目内容

17.设f(x)和g(x)的图象在[a,b]上是连续不断的,且f(a)<g(a),f(b)>g(b),试证明:在(a,b)内至少存在一点x0,使f(x0)=g(x0).

分析 构造函数F(x)=f(x)-g(x),根据题意得F(a)=f(a)-g(a)<0,F(b)=f(b)-g(b)>0,得出F(a)•F(b)<0,命题得证.

解答 证明:构造函数F(x)=f(x)-g(x),
因为f(x),g(x)的图象在[a,b]上是连续不断的,
所以F(x)在在[a,b]上也是连续不断的,
由于f(a)<g(a),f(b)>g(b),
所以,F(a)=f(a)-g(a)<0,F(b)=f(b)-g(b)>0,
所以,F(a)•F(b)<0,
因此,在区间(a,b)内必存在一点x0使得F(x0)=0,
即f(x0)=g(x0),即证.

点评 本题主要考查了函数零点的判断和证明,涉及函数零点的存在性定理,以及运用构造法,综合法证明问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网