题目内容
18.定义$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则$|{\begin{array}{l}{sin{{50}°}}&{cos{{40}°}}\\{-\sqrt{3}tan{{10}°}}&1\end{array}}|$=( )| A. | 2sin10° | B. | -1 | C. | $\sqrt{3}$ | D. | 0 |
分析 根据新定义,利用三角函数的恒等变换进行化简运算即可.
解答 解:由题意可得$|{\begin{array}{l}{sin{{50}°}}&{cos{{40}°}}\\{-\sqrt{3}tan{{10}°}}&1\end{array}}|$=sin50°-cos40°•(-tan10°)
=sin50°+$\sqrt{3}$cos40°•$\frac{sin10°}{cos10°}$
=sin50°+$\frac{\sqrt{3}•\frac{1}{2}(sin50°-sin30°)}{cos10°}$=$\frac{sin50°cos10°+\frac{\sqrt{3}}{2}sin50°-\frac{\sqrt{3}}{4}}{cos10°}$=$\frac{\frac{1}{2}(sin60°-sin40°)+\frac{\sqrt{3}}{2}sin50°-\frac{\sqrt{3}}{4}}{cos10°}$
=$\frac{\frac{\sqrt{3}}{2}sin50°-\frac{1}{2}cos50°}{cos10°}$=$\frac{sin(50°-30°)}{cos10°}$=2sin10°,
故选:A.
点评 本题主要考查了三角函数的化简与运算问题,也考查了新定义的应用问题,属于中档题.
练习册系列答案
相关题目
9.若实数x,y满足{x≥0y≥04x+3y≤12,则z=y+12x-2的取值范围是( )
| A. | [-12,14] | B. | [-52,14] | C. | (-∞,-12]∪[14,+∞) | D. | (-∞,-52]∪[14,+∞) |
6.在一个锐二面角的一个面内有一点,它到棱的距离等于到另一个平面的距离的2倍,则二面角大小为( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
7.直线xcosθ+ysinθ+a=0与圆x2+y2=a2交点的个数是( )
| A. | 0 | B. | 1 | C. | 随a变化 | D. | 随θ变化 |
8.与⊙C1:x2+(y+2)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是( )
| A. | $\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0) | B. | $\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0) | C. | $\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3) | D. | $\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3) |