题目内容
11.已知$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,它们的夹角为120°,那么|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{7}$.分析 运用向量数量积的定义可得$\overrightarrow{a}•\overrightarrow{b}$=1×1×cos120°=-$\frac{1}{2}$,再由向量的平方即为模的平方,化简整理计算即可得答案.
解答 解:由$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,它们的夹角为120°,
可得$\overrightarrow{a}•\overrightarrow{b}$=1×1×cos120°=-$\frac{1}{2}$,
则|$\overrightarrow{a}$+3$\overrightarrow{b}$|2=($\overrightarrow{a}+3\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow{b}+9{\overrightarrow{b}}^{2}$=$1+6×(-\frac{1}{2})+9=7$.
∴|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{7}$.
故答案为:$\sqrt{7}$.
点评 本题考查向量的数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于基础题.
练习册系列答案
相关题目
1.直线3x+4y+12=0与圆(x+1)2+(y+1)2=9的位置关系是( )
| A. | 过圆心 | B. | 相切 | C. | 相离 | D. | 相交 |
2.当曲线y=-$\sqrt{4-{x}^{2}}$与直线kx-y+2k-4=0有两个相异的交点时,实数k的取值范围是( )
| A. | (0,$\frac{3}{4}$) | B. | ($\frac{5}{12}$,$\frac{3}{4}$] | C. | ($\frac{3}{4}$,1] | D. | ($\frac{3}{4}$,+∞) |
6.现从编号为1~31的31台机器中,用系统抽样法抽取3台,测试其性能,则抽出的编号可能为( )
| A. | 4,9,14 | B. | 4,6,12 | C. | 2,11,20 | D. | 3,13,23 |
16.
为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①$y={C_1}{x^2}+{C_2}$与模型;②$y={e^{{C_3}x+{C_4}}}$作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
其中${t_i}={x_i}^2$,$\overline t=\frac{1}{7}\sum_{i=1}^7{t_i}$,zi=lnyi,$\overline z=\frac{1}{7}\sum_{i=1}^7{z_i}$,
附:对于一组数据(μ1,ν1),(μ2,ν2),…(μn,νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为${R_1}^2=0.82,{R_2}^2=0.96$.,请根据相关指数判断哪个模型的拟合效果更好.
| 温度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
| 产卵数y/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
| t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
| z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
| $\overline x$ | $\overline t$ | $\overline y$ | $\overline z$ |
| 26 | 692 | 80 | 3.57 |
| $\frac{{\sum_{i=1}^7{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({z_i}-\overline z)({x_i}-\overline x)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({z_i}-\overline z)({t_i}-\overline t)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$ |
| 1157.54 | 0.43 | 0.32 | 0.00012 |
附:对于一组数据(μ1,ν1),(μ2,ν2),…(μn,νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为${R_1}^2=0.82,{R_2}^2=0.96$.,请根据相关指数判断哪个模型的拟合效果更好.
3.已知m>0,n>0,且mn=2,则2m+n的最小值为( )
| A. | 4 | B. | 5 | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
20.已知函数f(x)的导函数为f′(x),且满足f(x)=3xf'(1)+lnx,则f′(1)=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -1 | D. | e |
4.已知在三棱柱ABC-A1B1C1中,△ABC为正三角形,AA1⊥平面ABC,且AA1=AB,过AB做平面α与BC1平行,平面α交平面ACC1A1于直线l,则直线l与BC所成角的余弦值为( )
| A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{10}$ | D. | $\frac{\sqrt{5}}{12}$ |