题目内容

15.曲线$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ为参数)的普通方程是2x+y-2=0,x∈[0,1].

分析 由已知中$\left\{\begin{array}{l}x=co{s}^{2}θ\\ y=2si{n}^{2}θ\end{array}\right.$可得:$\left\{\begin{array}{l}x=co{s}^{2}θ\\ \frac{1}{2}y=si{n}^{2}θ\end{array}\right.$,相加可得曲线的普通方程.

解答 解:∵$\left\{\begin{array}{l}x=co{s}^{2}θ\\ y=2si{n}^{2}θ\end{array}\right.$,
∴$\left\{\begin{array}{l}x=co{s}^{2}θ\\ \frac{1}{2}y=si{n}^{2}θ\end{array}\right.$,
两式相回得:x+$\frac{1}{2}y$=1,
即2x+y-2=0,
又由x=cos2θ∈[0,1]得:
曲线$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ为参数)的普通方程是2x+y-2=0,x∈[0,1],
故答案为:2x+y-2=0,x∈[0,1]

点评 本题考查的知识点参数方程与普通方程的互化,要注意x的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网