题目内容
15.曲线$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ为参数)的普通方程是2x+y-2=0,x∈[0,1].分析 由已知中$\left\{\begin{array}{l}x=co{s}^{2}θ\\ y=2si{n}^{2}θ\end{array}\right.$可得:$\left\{\begin{array}{l}x=co{s}^{2}θ\\ \frac{1}{2}y=si{n}^{2}θ\end{array}\right.$,相加可得曲线的普通方程.
解答 解:∵$\left\{\begin{array}{l}x=co{s}^{2}θ\\ y=2si{n}^{2}θ\end{array}\right.$,
∴$\left\{\begin{array}{l}x=co{s}^{2}θ\\ \frac{1}{2}y=si{n}^{2}θ\end{array}\right.$,
两式相回得:x+$\frac{1}{2}y$=1,
即2x+y-2=0,
又由x=cos2θ∈[0,1]得:
曲线$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ为参数)的普通方程是2x+y-2=0,x∈[0,1],
故答案为:2x+y-2=0,x∈[0,1]
点评 本题考查的知识点参数方程与普通方程的互化,要注意x的取值范围.
练习册系列答案
相关题目
3.已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合.曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程是ρ(cosθ+2sinθ)=15.若点P、Q分别是曲线C和直线l上的动点,则P、Q两点之间距离的最小值是( )
| A. | $\sqrt{10}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{21}$ |
10.(1-$\frac{1}{x}$)(1+x)5的展开式中项x3的系数为( )
| A. | 7 | B. | 8 | C. | 10 | D. | 5 |
4.函数f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的图象关于原点对称,则a=( )
| A. | 1 | B. | -1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |