题目内容
8.(2+x)(1-2x)5展开式中,x2项的系数为( )| A. | 30 | B. | 70 | C. | 90 | D. | -150 |
分析 先求得(1-2x)5展开式的通项公式,可得(2+x)(1-2x)5展开式中,x2项的系数.
解答 解:∵(1-2x)5展开式的通项公式为Tr+1=C5r•(-2x)r,
∴(2+x)(1-2x)5展开式中,x2项的系数为2C52•(-2)2+C51•(-2)=70,
故选:B.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关题目
19.观察下列等式:

可以推测:13+23+33+…+n3=________(n∈N*,用含n的代数式表示).( )
可以推测:13+23+33+…+n3=________(n∈N*,用含n的代数式表示).( )
| A. | $\frac{1}{4}{n^2}{(n-1)^2}$ | B. | $\frac{1}{4}{n^2}{(n-2)^2}$ | C. | $\frac{1}{4}{n^2}{(n+1)^2}$ | D. | $\frac{1}{4}{n^2}{(n+2)^2}$ |
16.从装有3个红球和2个白球的袋中任取3个球,则所取的3个球中至少有2个红球的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{3}{5}$ |
17.
如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$的取值范围为( )
| A. | $[0,8+6\sqrt{2}]$ | B. | $[-2\sqrt{2},8+6\sqrt{2}]$ | C. | $[-8-6\sqrt{2},2\sqrt{2}]$ | D. | $[-8-6\sqrt{2},8+6\sqrt{2}]$ |
18.在△ABC中,角A,B,C所对的边分别是a,b,c,若a2+b2=2c2,则角C的取值范围是( )
| A. | $({0,\frac{π}{3}}]$ | B. | $({0,\frac{π}{3}})$ | C. | $({0,\frac{π}{6}}]$ | D. | $({0,\frac{π}{6}})$ |