题目内容

设全集U=R,集合A={x|x2-2x<0},集合B={x|y=lg(x-1)},则A∩B=(  )
A、{x|1≤x<2}
B、{x|x>2}
C、{x|x>1}
D、{x|1<x<2}
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.
解答: 解:由A中不等式变形得:x(x-2)<0,
解得:0<x<2,即A={x|0<x<2},
由B中y=lg(x-1),得到x-1>0,
解得:x>1,即B={x|x>1},
则A∩B={x|1<x<2}.
故选:D.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网