题目内容
设G为△ABC的重心,过G的直线l分别交△ABC的两边AB、AC于P、Q,已知
=λ
,
=μ
,△ABC和△APQ的面积分别为S、T.
(1)求证:
+
=3;
(2)求
的取值范围.
| AP |
| AB |
| AQ |
| AC |
(1)求证:
| 1 |
| λ |
| 1 |
| μ |
(2)求
| T |
| S |
(1)设
=
,
=
连接AG并延长AG交BC于M,此时M是BC的中点.
于是
=
(
+
)=
(
+
)
=
(
+
)
又由已知
=λ
=λ
.
=μ
=μ
.
∴
=
-
=μ
-λ
c
=
+
=
(
+
)-λ
=(
-λ)
+
因为P、G、Q三点共线,则存在实数t,满足
=t
所以(
-λ)
+
=tμ
-tλ
由向量相等的条件得
消去参数t得,
=-
,
即
+
=3.…(6分)
(2)由于△APQ与△ABC有公共角,则
=
=λμ,
由题设有0<λ≤1,0<μ≤1,于是
≥1,
≥1,
∵
=3-
≤2,∴1≤
≤2,
∵
+
=3∴μ=
=λμ=
=
=
…(12分)
∵1≤
≤2,∴当
=
时,-(
-
)2+
有最大值
,
λ=1或2时,-(
-
)2+
有最小值2.
∴
的取值范围为[
,
].…14
| AB |
| c |
| AC |
| b |
于是
| AM |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 2 |
| b |
| c |
| AG |
| 1 |
| 3 |
| b |
| c |
又由已知
| AP |
| AB |
| c |
| AQ |
| AC |
| b |
∴
| PQ |
| AQ |
| AP |
| b |
| c |
| PG |
| AG |
| PA |
| 1 |
| 3 |
| b |
| c |
| c |
| 1 |
| 3 |
| c |
| 1 |
| 3 |
| b |
因为P、G、Q三点共线,则存在实数t,满足
| PG |
| PQ |
所以(
| 1 |
| 3 |
| c |
| 1 |
| 3 |
| b |
| b |
| c |
由向量相等的条件得
|
| ||
|
| λ |
| μ |
即
| 1 |
| λ |
| 1 |
| μ |
(2)由于△APQ与△ABC有公共角,则
| T |
| S |
|
| ||||
|
|
由题设有0<λ≤1,0<μ≤1,于是
| 1 |
| λ |
| 1 |
| μ |
∵
| 1 |
| λ |
| 1 |
| μ |
| 1 |
| λ |
∵
| 1 |
| λ |
| 1 |
| μ |
| λ |
| 3λ-1 |
| T |
| S |
| λ2 |
| 3λ-1 |
| 1 | ||||
-
|
| 1 | ||||||
-(
|
∵1≤
| 1 |
| λ |
| 1 |
| λ |
| 3 |
| 2 |
| 1 |
| λ |
| 3 |
| 2 |
| 9 |
| 4 |
| 9 |
| 4 |
λ=1或2时,-(
| 1 |
| λ |
| 3 |
| 2 |
| 9 |
| 4 |
∴
| T |
| S |
| 4 |
| 9 |
| 1 |
| 2 |
练习册系列答案
相关题目