题目内容
设等差数列{an}与{bn}的前n项之和分别为Sn与Sn′,若
=
,则
=
.
| Sn |
| Sn′ |
| 7n+2 |
| n+3 |
| a7 |
| b7 |
| 93 |
| 16 |
| 93 |
| 16 |
分析:利用等差数列的性质S2n-1=(2n-1)•an,S′2n-1=(2n-1)•bn即可求得
.
| a7 |
| b7 |
解答:解:∵{an}为等差数列,其前n项之和为Sn,
∴S2n-1=
=
=(2n-1)•an,
同理可得,S′2n-1=(2n-1)•bn,
∴
=
,
又
=
,
∴
=
=
,
∴
=
,
∴
=
.
故答案为:
.
∴S2n-1=
| (2n-1)(a1+a2n-1) |
| 2 |
=
| (2n-1)×2an |
| 2 |
=(2n-1)•an,
同理可得,S′2n-1=(2n-1)•bn,
∴
| an |
| bn |
| S2n-1 |
| S2n-1′ |
又
| Sn |
| S′n |
| 7n+2 |
| n+3 |
∴
| S2n-1 |
| S′2n-1 |
| 7(2n-1)+2 |
| (2n-1)+3 |
| 14n-5 |
| 2n+2 |
∴
| an |
| bn |
| 14n-5 |
| 2n+2 |
∴
| a7 |
| b7 |
| 93 |
| 16 |
故答案为:
| 93 |
| 16 |
点评:本题考查等差数列的性质,求得
=
是关键,考查熟练应用等差数列解决问题的能力,属于中档题.
| an |
| bn |
| S2n-1 |
| S′2n-1 |
练习册系列答案
相关题目