题目内容

13.若tanα=-$\frac{1}{3}$,求$\begin{array}{l}(1)\frac{{2sin({π-α})+cosα}}{{sinα+sin({\frac{π}{2}+α})}};(2)sin2α.\end{array}$.

分析 (1)利用诱导公式和同角三角函数进行化简求值;
(2)利用二倍角公式和同角三角函数进行化简求值.

解答 解:(1)原式=$\frac{2sinα+cosα}{sinα+cosα}$=$\frac{2tanα+1}{tanα+1}$=$\frac{2×(-\frac{1}{3})+1}{-\frac{1}{3}+1}$=$\frac{1}{2}$;
(2)原式=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{ta{n}^{2}α+1}$=$\frac{-\frac{2}{3}}{\frac{1}{9}+1}$=-$\frac{3}{5}$.

点评 本题主要考查了同角三角函数关系式和二倍角公式的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网