题目内容
如图2-2-11,已知四边形ABCD内接于⊙O,AB是直径,AD =DC,分别延长BA、CD交于点E,BF⊥EC,交EC的延长线于F,若EA =AO,BC =12.求CF的长.![]()
图2-2-11
思路分析:在Rt△CFB中,已知BC=12,要求CF,只有寻找与它相似的三角形,根据四边形ABCD内接于⊙O,则∠BCF =∠BAD,因此连结BD,构造Rt△BAD,下面证明△BAD∽△BCF.
解:连结OD、BD,?
∵AD = DC,∴AD =DC.?
∴∠ABC m ![]()
m
m ∠AOD.?
∴OD∥BC.∴
=
.?
∵EA =AO =BO,BC=12,?
∴OD =8.∴AB =16,EB =24.?
∵四边形ABCD内接于⊙O,?
∴∠EDA =∠EBC.∴△EDA∽△EBC.?
∴
=
=
.?
设AD =CD =x,ED =y,?
则
=
=
,解得
,
,?
∴
.?
∵AB为⊙O的直径,∴∠ADB =∠F =90°.?
又∠DAB =∠FCB,∴Rt△ADB∽Rt△CFB.?
∴
=
,即
=
,?
∴
.
练习册系列答案
相关题目