题目内容
18.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱最大体积为( )| A. | $\frac{π}{27}$ | B. | $\frac{8π}{27}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{9}$ |
分析 根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.
解答 解:设圆柱的半径为r,高为x,体积为V,
则由题意可得$\frac{r}{1}=\frac{2-x}{2}$,
∴x=2-2r,
∴圆柱的体积为V(r)=πr2(2-2r)(0<r<1),
则V(r)≤π$(\frac{r+r+2-2r}{3})^{3}$=$\frac{8}{27}π$
∴圆柱的最大体积为$\frac{8}{27}π$,此时r=$\frac{2}{3}$,
故选:B.
点评 本题主要考查基本不等式在生活中的优化问题,利用条件建立体积函数是解决本题的关键.
练习册系列答案
相关题目
8.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
附表:
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616参照附表,得到的正确结论是( )
| 非一线 | 一线 | 总计 | |
| 愿生 | 45 | 20 | 65 |
| 不愿生 | 13 | 22 | 35 |
| 总计 | 58 | 42 | 100 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关” | |
| B. | 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关” | |
| C. | 有99%以上的把握认为“生育意愿与城市级别有关” | |
| D. | 有99%以上的把握认为“生育意愿与城市级别无关” |
9.四个变量y1、y2、y3、y4随变量x变化的函数值如表:
关于x呈单调增加的指数型函数和线性函数变化的变量分别是( )
| x | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
| y1 | 5 | 130 | 505 | 1130 | 2005 | 3130 | 4505 |
| y2 | 5 | 94.478 | 1785.2 | 33733 | 6.37×105 | 1.2×107 | 2.28×108 |
| y3 | 5 | 30 | 55 | 80 | 105 | 130 | 155 |
| y4 | 5 | 2.3107 | 1.4295 | 1.1407 | 1.0461 | 1.0151 | 1.005 |
| A. | y2、y1 | B. | y2、y3 | C. | y4、y3 | D. | y1、y3 |
6.已知直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,点E在梯形内,那么∠AEB为钝角的概率为( )
| A. | $\frac{2π}{25}$ | B. | $\frac{4π}{25}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |