题目内容
正项数列{an}的前项和Sn满足:Sn2-(n2+n)Sn-(n2+n+1)=0,
(1)求数列{an}的通项公式;
(2)令bn=
,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*且n≥2,都有 Tn-T1<
.
(1)求数列{an}的通项公式;
(2)令bn=
| n+1 |
| (n+2)2an2 |
| 13 |
| 576 |
分析:(1)由Sn2-(n2+n)Sn-(n2+n+1)=0可求sn,然后利用a1=s1,n≥2时,an=sn-sn-1可求an
(2)由bn=
=
=
[
-
],利用裂项求和可求Tn,利用放缩法即可证明.
(2)由bn=
| n+1 |
| (n+2)2an2 |
| n+1 |
| 4n2(n+2)2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
解答:解:(1)由已知得[Sn-(n2+n+1)](Sn+1)=0.…(2分)
由于{an}是正项数列,
所以Sn>0,Sn=n2+n+1.…(3分)
于是a1=S1=3,…(4分)
当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.…(6分)
综上,数列{an}的通项an=
.…(7分)
(2)证明:当n≥2时,由bn=
,
得bn=
=
[
-
].…(9分)
Tn-T1=b2+b3+b4+…+bn-1+bn
=
[
-
+
-
+
-
+…+
-
+
-
]
=
×[
+
-
-
]…(12分)
<
×(
+
)=
.…(14分)
由于{an}是正项数列,
所以Sn>0,Sn=n2+n+1.…(3分)
于是a1=S1=3,…(4分)
当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.…(6分)
综上,数列{an}的通项an=
|
(2)证明:当n≥2时,由bn=
| n+1 | ||
(n+2)2
|
得bn=
| n+1 |
| 4n2(n+2)2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
Tn-T1=b2+b3+b4+…+bn-1+bn
=
| 1 |
| 16 |
| 1 |
| 22 |
| 1 |
| 42 |
| 1 |
| 32 |
| 1 |
| 52 |
| 1 |
| 42 |
| 1 |
| 62 |
| 1 |
| (n-1)2 |
| 1 |
| (n+1)2 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 16 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
<
| 1 |
| 16 |
| 1 |
| 22 |
| 1 |
| 32 |
| 13 |
| 576 |
点评:本题主要考查了递推公式a1=s1,n≥2时,an=sn-sn-1在求解数列的通项公式中的应用及数列的裂项求和方法的应用.
练习册系列答案
相关题目