ÌâÄ¿ÄÚÈÝ

4£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬µã$P£¨{1£¬\frac{3}{2}}£©$ÔÚÍÖÔ²CÉÏ£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãB£¬ÇÒ$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}B}=\overrightarrow 0$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¹ýµãQ£¨4£¬0£©µÄÖ±ÏßmÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¬Ê¹µÃ36|QP|2=35|QM|•|QN|£¿Èô´æÔÚ£¬Çó³öÖ±ÏßmµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Éè³öBµÄ×ø±ê£¬¸ù¾Ý$\overrightarrow{{F}_{2}A}$•$\overrightarrow{AB}$=0£¬ÒÔ¼°F1ΪF2BµÄÖе㣬Çó³öa=2c£¬µÃµ½¹ØÓÚa£¬b£¬cµÄ·½³Ì£¬Çó³öÍÖÔ²µÄ·½³Ì¼´¿É£»
£¨2£©ÉèÖ±ÏßmµÄ·¶Î§Îªy=k£¨x-4£©£¬ÁªÁ¢·½³Ì×éµÃµ½£¨3+4k2£©x2-32k2x+64k2-12=0£¬Çó³ökµÄ·¶Î§£¬ÉèM£¨x1£¬y1£©£¬N £¨x2£¬y2£©£¬µÃµ½¹ØÓÚkµÄ·½³Ì£¬½â³ö¼´¿É£®

½â´ð ½â£º£¨1£©ÉèB£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©£¬
µÃ$\overrightarrow{{F}_{2}A}$=£¨-c£¬b£©£¬$\overrightarrow{AB}$=£¨x0£¬-b£©£¬
¡ß$\overrightarrow{{F}_{2}A}$•$\overrightarrow{AB}$=0£¬¡à-cx0-b2=0£¬
¡àx0=-$\frac{{b}^{2}}{c}$£¬
¡ß2$\overrightarrow{{{F}_{1}F}_{2}}$+$\overrightarrow{{F}_{2}B}$=0£¬
¡àF1ΪF2BµÄÖе㣬
¡à-$\frac{{b}^{2}}{c}$+c=-2c£¬
¡àb2=3c2=a2-c2£¬
¡àa=2c£¬
ÓÉ$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{9}{4}}{{b}^{2}}=1}\\{a=2c}\\{{a}^{2}{=b}^{2}{+c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{c}^{2}=1}\\{{b}^{2}=3}\\{{a}^{2}=4}\end{array}\right.$£¬
¡àÍÖÔ²µÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßmµÄбÂÊ´æÔÚ£¬
¡à¿ÉÉèÖ±ÏßmµÄ·¶Î§Îªy=k£¨x-4£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£¨3+4k2£©x2-32k2x+64k2-12=0£¬
ÓÉ¡÷=£¨32k2£©2-4£¨3+4k2£©£¨64k2-12£©£¾0£¬
½âµÃ£º-$\frac{1}{2}$£¼k£¼$\frac{1}{2}$£¬
ÉèM£¨x1£¬y1£©£¬N £¨x2£¬y2£©£¬
Ôòx1+x2=$\frac{3{2k}^{2}}{3+{4k}^{2}}$£¬x1x2=$\frac{6{4k}^{2}-12}{3+{4k}^{2}}$£¬
¡ß|PQ|2=$\frac{45}{4}$£¬¡à|QM|•|QN|=$\frac{81}{7}$£¬
ÓÖ|QM|•|QN|=$\sqrt{{£¨4{-x}_{1}£©}^{2}{{+y}_{1}}^{2}}$¡Á$\sqrt{{£¨4{-x}_{2}£©}^{2}{{+y}_{2}}^{2}}$
=£¨k2+1£©[x1x2-4£¨x1+x2£©+16]=£¨k2+1£©•$\frac{36}{3+{4k}^{2}}$£¬
¡à£¨k2+1£©•$\frac{36}{3+{4k}^{2}}$=$\frac{81}{7}$£¬
½âµÃ£ºk=$\frac{\sqrt{2}}{4}$£¬¾­¼ìÑé³ÉÁ¢£¬
¡àÖ±Ïß·½³ÌÊÇy=¡À$\frac{\sqrt{2}}{4}$£¨x-4£©¼´$\sqrt{2}$x+4y-4$\sqrt{2}$=0»ò$\sqrt{2}$x-4y-4$\sqrt{2}$=0£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇó½â£¬Ö±ÏßÓëÍÖԲλÖùØÏµµÄÎÊÌ⣬¿¼²é·ÖÎöÀí½âÓë¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø