ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬µã$P£¨{1£¬\frac{3}{2}}£©$ÔÚÍÖÔ²CÉÏ£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãB£¬ÇÒ$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}B}=\overrightarrow 0$£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¹ýµãQ£¨4£¬0£©µÄÖ±ÏßmÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¬Ê¹µÃ36|QP|2=35|QM|•|QN|£¿Èô´æÔÚ£¬Çó³öÖ±ÏßmµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Éè³öBµÄ×ø±ê£¬¸ù¾Ý$\overrightarrow{{F}_{2}A}$•$\overrightarrow{AB}$=0£¬ÒÔ¼°F1ΪF2BµÄÖе㣬Çó³öa=2c£¬µÃµ½¹ØÓÚa£¬b£¬cµÄ·½³Ì£¬Çó³öÍÖÔ²µÄ·½³Ì¼´¿É£»
£¨2£©ÉèÖ±ÏßmµÄ·¶Î§Îªy=k£¨x-4£©£¬ÁªÁ¢·½³Ì×éµÃµ½£¨3+4k2£©x2-32k2x+64k2-12=0£¬Çó³ökµÄ·¶Î§£¬ÉèM£¨x1£¬y1£©£¬N £¨x2£¬y2£©£¬µÃµ½¹ØÓÚkµÄ·½³Ì£¬½â³ö¼´¿É£®
½â´ð ½â£º£¨1£©ÉèB£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©£¬
µÃ$\overrightarrow{{F}_{2}A}$=£¨-c£¬b£©£¬$\overrightarrow{AB}$=£¨x0£¬-b£©£¬
¡ß$\overrightarrow{{F}_{2}A}$•$\overrightarrow{AB}$=0£¬¡à-cx0-b2=0£¬
¡àx0=-$\frac{{b}^{2}}{c}$£¬
¡ß2$\overrightarrow{{{F}_{1}F}_{2}}$+$\overrightarrow{{F}_{2}B}$=0£¬
¡àF1ΪF2BµÄÖе㣬
¡à-$\frac{{b}^{2}}{c}$+c=-2c£¬
¡àb2=3c2=a2-c2£¬
¡àa=2c£¬
ÓÉ$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{9}{4}}{{b}^{2}}=1}\\{a=2c}\\{{a}^{2}{=b}^{2}{+c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{c}^{2}=1}\\{{b}^{2}=3}\\{{a}^{2}=4}\end{array}\right.$£¬
¡àÍÖÔ²µÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßmµÄбÂÊ´æÔÚ£¬
¡à¿ÉÉèÖ±ÏßmµÄ·¶Î§Îªy=k£¨x-4£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£¨3+4k2£©x2-32k2x+64k2-12=0£¬
ÓÉ¡÷=£¨32k2£©2-4£¨3+4k2£©£¨64k2-12£©£¾0£¬
½âµÃ£º-$\frac{1}{2}$£¼k£¼$\frac{1}{2}$£¬
ÉèM£¨x1£¬y1£©£¬N £¨x2£¬y2£©£¬
Ôòx1+x2=$\frac{3{2k}^{2}}{3+{4k}^{2}}$£¬x1x2=$\frac{6{4k}^{2}-12}{3+{4k}^{2}}$£¬
¡ß|PQ|2=$\frac{45}{4}$£¬¡à|QM|•|QN|=$\frac{81}{7}$£¬
ÓÖ|QM|•|QN|=$\sqrt{{£¨4{-x}_{1}£©}^{2}{{+y}_{1}}^{2}}$¡Á$\sqrt{{£¨4{-x}_{2}£©}^{2}{{+y}_{2}}^{2}}$
=£¨k2+1£©[x1x2-4£¨x1+x2£©+16]=£¨k2+1£©•$\frac{36}{3+{4k}^{2}}$£¬
¡à£¨k2+1£©•$\frac{36}{3+{4k}^{2}}$=$\frac{81}{7}$£¬
½âµÃ£ºk=$\frac{\sqrt{2}}{4}$£¬¾¼ìÑé³ÉÁ¢£¬
¡àÖ±Ïß·½³ÌÊÇy=¡À$\frac{\sqrt{2}}{4}$£¨x-4£©¼´$\sqrt{2}$x+4y-4$\sqrt{2}$=0»ò$\sqrt{2}$x-4y-4$\sqrt{2}$=0£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇó½â£¬Ö±ÏßÓëÍÖԲλÖùØÏµµÄÎÊÌ⣬¿¼²é·ÖÎöÀí½âÓë¼ÆËãÄÜÁ¦£®
| A£® | p¡Äq | B£® | £¨©Vp£©¡Äq | C£® | p¡Ä£¨©Vq£© | D£® | £¨©Vp£©¡Ä£¨©Vq£© |
| ×ø±êϵÓë²ÎÊý·½³Ì | ²»µÈʽѡ½² | |||
| ÈËÊý¼°¾ù·Ö | ÈËÊý | ¾ù·Ö | ÈËÊý | ¾ù·Ö |
| ÄÐͬѧ | 14 | 8 | 6 | 7 |
| Ůͬѧ | 8 | 6.5 | 12 | 5.5 |
£¨¢ò£©¾Ý´ËÅжÏÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪѡ×ö¡¶×ø±êϵÓë²ÎÊý·½³Ì¡·»ò¡¶²»µÈʽѡ½²¡·ÓëÐÔ±ðÓйأ¿
£¨¢ó£©ÒÑ֪ѧϰίԱ¼×£¨Å®£©ºÍÊýѧ¿Æ´ú±íÒÒ£¨ÄУ©¶¼Ñ¡×ö¡¶²»µÈʽѡ½²¡·£®ÈôÔÚ¡¶²»µÈʽѡ½²¡·Öа´ÐÔ±ð·Ö²ã³éÑù³éÈ¡3ÈË£¬¼Ç¼×ÒÒÁ½È˱»Ñ¡ÖеÄÈËÊýΪ£¬ÇóµÄÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬n=a+b+c+d£®
ÏÂÃæÁÙ½çÖµ±í½ö¹©²Î¿¼£º
| P£¨K2¡Ýk0£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A£® | ?x¡Ê£¨0£¬¦Ð£©£¬sinx=tanx | |
| B£® | ¡°?x¡ÊR£¬x2+x+1£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x0¡ÊR£¬x02+x0+1£¼0¡± | |
| C£® | ?¦È¡ÊR£¬º¯Êýf£¨x£©=sin£¨2x+¦È£©¶¼²»ÊÇżº¯Êý | |
| D£® | Ìõ¼þp£º$\left\{\begin{array}{l}{x+y£¾4}\\{xy£¾4}\end{array}\right.$£¬Ìõ¼þq£º$\left\{\begin{array}{l}{x£¾2}\\{y£¾2}\end{array}\right.$ÔòpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ |
| A£® | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | B£® | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=1 | C£® | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | D£® | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1 |