题目内容
将边长为4正三角形薄片,用平行于底边的两条直线剪成三块(如图所示),这两条平行线间的距离为,其中间一块是梯形记为,记,则的最小值为___________.
已知函数,,若与的图象上分别存在点,使得关于直线对称,则实数的取值范围是 .
已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(1)若直线与曲线交于两点,求的值;
(2)求曲线的内接矩形的周长的最大值.
执行如图所示的程序框图,输出的值为( )
A.42 B.19 C.8 D.3
江苏高考新方案采用“3+3”模式,语数外三门必考,然后在物理、化学、生物、历史、政治、地理六门学科中任选三六进行测试,现有甲、乙、丙三人进行模拟选择:甲的物理非常优秀,所以甲必要选择物理,其余两门随机选择;乙的政治比较薄弱,所以乙一定不选政治,其余随机选择;丙的各门成绩比较平均,所以丙随机选择三门.
(1)则甲、乙、丙三人分别有多少种选择方法;
(2)三人中恰有2人选择物理的概率;
(3)随机变量表示三人中选择物理的人数,写出的概率分布及数学期望.
的展开式中的系数为____________.
计算:的值为___________.
一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )
A. B. C. D.
通过模拟试验,产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884
2604 3346 0952 6807 9706 5774 5725
6576 5929 9768 6071 9138 6754
如果恰有三个数在1,2,3,4,5,6中,那么表示恰有三次击中目标,那么四次射击中恰有三次击中目标的概率约为____.