ÌâÄ¿ÄÚÈÝ
9£®¸ø³öÏÂÁÐËÄÖÖ˵·¨£¬Ëµ·¨ÕýÈ·µÄÓТ٢ۣ¨ÇëÌîдÐòºÅ£©¢Ùº¯Êýy=ax£¨a£¾0£¬ÇÒa¡Ù1£©Ó뺯Êýy=logaax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ¶¨ÒåÓòÏàͬ£»
¢Úº¯Êýf£¨x£©=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$ºÍy=$\sqrt{x-1}+\sqrt{1-x}$¶¼ÊÇ¼ÈÆæÓÖżµÄº¯Êý£»
¢ÛÒÑÖª¶ÔÈÎÒâµÄ·ÇÁãʵÊýx¶¼ÓÐ$f£¨x£©+2f£¨\frac{1}{x}£©=2x+1$£¬Ôòf£¨2£©=-$\frac{1}{3}$£»
¢Üº¯Êýf£¨x£©ÔÚ£¨a£¬b]ºÍ£¨b£¬c£©É϶¼ÊÇÔöº¯Êý£¬Ôòº¯Êýf£¨x£©ÔÚ£¨a£¬c£©ÉÏÒ»¶¨ÊÇÔöº¯Êý£®
·ÖÎö ¢Ùº¯Êýy=axµÄ¶¨ÒåÓòΪR£¬º¯Êýy=logaax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ¶¨ÒåÓòΪax£¾0£¬x¡ÊR£»
¢Úº¯Êýf£¨x£©=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$µÄ¶¨ÒåÓòΪ{-1£¬1}£¬y=$\sqrt{x-1}+\sqrt{1-x}$µÄ¶¨ÒåÓòΪ{1}²»¹ØÓÚÔµã¶Ô³Æ£¬
¢ÛÓÉ$f£¨x£©+2f£¨\frac{1}{x}£©=2x+1$£¬µÃf£¨$\frac{1}{x}$£©+2f£¨x£©=$\frac{2}{x}$+1£¬ÁªÁ¢¿ÉµÃf£¨x£©=$\frac{4}{3x}$$-\frac{2x}{3}$$+\frac{1}{3}$£¬´úÈëÇóÖµ¼´¿É£»
¢Üº¯Êýf£¨x£©ÔÚ£¨a£¬b]ºÍ£¨b£¬c£©É϶¼ÊÇÔöº¯Êý£¬Ö»ÄÜ˵Ã÷º¯ÊýµÄÔöÇø¼äΪ£¨a£¬b]ºÍ£¨b£¬c£©£®
½â´ð ½â£º¢Ùº¯Êýy=axµÄ¶¨ÒåÓòΪR£¬º¯Êýy=logaax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ¶¨ÒåÓòΪax£¾0£¬x¡ÊR£¬¹ÊÕýÈ·£»
¢Úº¯Êýf£¨x£©=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$µÄ¶¨ÒåÓòΪ{-1£¬1}£¬ÇÒf£¨x£©=0£¬ÊÇ¼ÈÆæÓÖżµÄº¯Êý£¬y=$\sqrt{x-1}+\sqrt{1-x}$µÄ¶¨ÒåÓòΪ{1}²»¹ØÓÚÔµã¶Ô³Æ£¬¹ÊÊÇ·ÇÆæ·Çżº¯Êý£¬¹Ê´íÎó£»
¢ÛÓÉ$f£¨x£©+2f£¨\frac{1}{x}£©=2x+1$£¬µÃf£¨$\frac{1}{x}$£©+2f£¨x£©=$\frac{2}{x}$+1£¬ÁªÁ¢¿ÉµÃf£¨x£©=$\frac{4}{3x}$$-\frac{2x}{3}$$+\frac{1}{3}$£¬µÃÔòf£¨2£©=-$\frac{1}{3}$£¬¹ÊÕýÈ·£»
¢Üº¯Êýf£¨x£©ÔÚ£¨a£¬b]ºÍ£¨b£¬c£©É϶¼ÊÇÔöº¯Êý£¬Ö»ÄÜ˵Ã÷º¯ÊýµÄÔöÇø¼äΪ£¨a£¬b]ºÍ£¨b£¬c£©£¬µ«º¯Êýf£¨x£©ÔÚ£¨a£¬c£©Éϲ»Ò»¶¨ÊÇÔöº¯Êý£¬¹Ê´íÎó£®
¹Ê´ð°¸Îª¢Ù¢Û£®
µãÆÀ ¿¼²éÁ˺¯Êý¶¨ÒåÓòµÄÇ󷨣¬º¯ÊýÆæÅ¼ÐÔµÄÅж¨£¬³éÏóº¯ÊýµÄÇó½âºÍµ¥µ÷Çø¼äµÄÈ·¶¨£®ÊôÓÚ»ù´¡ÌâÐÍ£¬Ó¦ÊìÁ·ÕÆÎÕ£®
| A£® | -4 | B£® | $-\frac{1}{4}$ | C£® | $\frac{1}{4}$ | D£® | 4 |