题目内容

10.求下列函数的单调区间:
(1)y=cos(2x+$\frac{π}{6}$);
(2)y=3sin($\frac{π}{3}$-$\frac{x}{2}$).

分析 根据三角函数的单调性进行求解即可.

解答 解:(1)y=cos(2x+$\frac{π}{6}$);
∵-π+2kπ≤2x+$\frac{π}{6}$≤2kπ,2kπ<2x+$\frac{π}{6}$≤2kπ+π,k∈Z,
∴-$\frac{7π}{12}$+kπ≤x≤kπ-$\frac{π}{12}$,kπ-$\frac{π}{12}$<x<kπ+$\frac{5π}{12}$,k∈Z,
∴y=cos(2x+$\frac{π}{6}$)在[-$\frac{7π}{12}$+kπ,kπ-$\frac{π}{12}$]上单调递增,在(kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z上单调递减,
(2)y=3sin($\frac{π}{3}$-$\frac{x}{2}$)=-3sin(-$\frac{π}{3}$+$\frac{x}{2}$),
∵-$\frac{π}{2}$+2kπ≤-$\frac{π}{3}$+$\frac{x}{2}$≤2kπ+$\frac{π}{2}$,2kπ+$\frac{π}{2}$<-$\frac{π}{3}$+$\frac{x}{2}$≤2kπ+$\frac{3π}{2}$,k∈Z,
∴-$\frac{π}{3}$+4kπ≤x≤4kπ+$\frac{5π}{3}$,4kπ+$\frac{5π}{3}$<x≤4kπ+$\frac{11π}{3}$,k∈Z,
∴y=cos(2x+$\frac{π}{6}$)在[-$\frac{π}{3}$+4kπ,4kπ+$\frac{5π}{3}$]上单调递减,在(4kπ+$\frac{5π}{3}$,4kπ+$\frac{11π}{3}$],k∈Z上单调递增.

点评 本题主要考查三角函数的单调区间的求解,根据正弦余弦函数的单调性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网