题目内容

11.设数列{an}的通项公式为${a_n}={(\frac{3}{2})^{n-1}}$,则满足不等式$\sum_{i=1}^n{\frac{3}{a_i}}>\sum_{i=1}^n{a_i}$的正整数n的集合为{1,2,3}.

分析 由等比数列的前n项和公式,可得$9[1-{(\frac{2}{3})}^{n}]$>$2[{(\frac{3}{2})}^{n}-1]$,结合指数的运算性质,可得${(\frac{3}{2})}^{n}$<$\frac{9}{2}$,解得答案.

解答 解:∵${a_n}={(\frac{3}{2})^{n-1}}$,
∴$\sum _{i=1}^{n}\frac{3}{{a}_{i}}$=$\frac{3[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}$=$9[1-{(\frac{2}{3})}^{n}]$,$\sum _{i=1}^{n}{a}_{i}=\frac{1-(\frac{3}{2})^{n}}{1-\frac{3}{2}}$=$2[{(\frac{3}{2})}^{n}-1]$,
若$\sum_{i=1}^n{\frac{3}{a_i}}>\sum_{i=1}^n{a_i}$,则$9[1-{(\frac{2}{3})}^{n}]$>$2[{(\frac{3}{2})}^{n}-1]$,
∴$\frac{{(\frac{3}{2})}^{n}-1}{1-{(\frac{2}{3})}^{n}}$=${(\frac{3}{2})}^{n}$<$\frac{9}{2}$,
解得:m=1,n=2,n=3,
∴满足不等式$\sum_{i=1}^n{\frac{3}{a_i}}>\sum_{i=1}^n{a_i}$的正整数n的集合为{1,2,3},
故答案为:{1,2,3}

点评 本题考查的知识点是等比数列的前n项和公式,指数不等式的解法,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网