题目内容
1.曲线f(x)=$\frac{2}{{{x^2}-1}}$、直线x=2、x=3以及x轴所围成的封闭图形的面积是( )| A. | ln2 | B. | ln3 | C. | 2ln2 | D. | $ln\frac{3}{2}$ |
分析 利用定积分表示面积,借助于自然对数函数,即可得出结论.
解答 解:曲线f(x)=$\frac{2}{{{x^2}-1}}$、直线x=2、x=3以及x轴所围成的封闭图形的面积是:
${∫}_{2}^{3}\frac{2}{{x}^{2}-1}dx$=${∫}_{2}^{3}(\frac{1}{x-1}-\frac{1}{x+1})dx$=[ln(x-1)-ln(x+1)]${|}_{2}^{3}$=(ln2-ln4)-(ln1-ln3)=$ln\frac{3}{2}$,
故选D.
点评 本题主要考查区域面积的计算,根据积分的几何意义,是解决本题的关键.
练习册系列答案
相关题目
9.若tanα=2,则cos2α-sin2α的值为( )
| A. | $-\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
10.下列哪一组中的函数f(x)与g(x)是相同函数( )
| A. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | B. | $f(x)={x^2},g(x)={(\sqrt{x})^4}$ | ||
| C. | f(x)=x2,g(x)=$\root{3}{x^6}$ | D. | y=$\sqrt{x+1}\sqrt{x-1},y=\sqrt{(x+1)(x-1)}$ |
11.已知0≤x≤$\frac{3}{2}$,则函数f(x)=x2+x+1( )
| A. | 有最小值-$\frac{3}{4}$,无最大值 | B. | 有最小值$\frac{3}{4}$,最大值1 | ||
| C. | 有最小值1,最大值$\frac{19}{4}$ | D. | 无最小值和最大值 |