题目内容
8.已知θ∈(30°,65°),那么2θ是( )| A. | 第一象限角 | B. | 第二象限角 | ||
| C. | 小于180°的正角 | D. | 第一或第二象限角 |
分析 根据象限角和轴线角的定义直接判断即可.
解答 解:∵θ∈(30°,65°),
∴2θ∈(60°,130°),
∴2θ属于第一象限或第二象限或轴线角,
故选:C.
点评 本题考查了象限角和轴线角,属于基础题.
练习册系列答案
相关题目
17.函数y=-2cos($\frac{x}{2}$+$\frac{π}{3}$)在区间($\frac{28}{5}$π,a]上是单调函数,则实数a的最大值为( )
| A. | $\frac{17π}{3}$ | B. | 6π | C. | $\frac{20π}{3}$ | D. | $\frac{22π}{3}$ |
6.P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上异于左右顶点A1,A2的任意一点,则直线PA1与PA2的斜率之积为定值-$\frac{{b}^{2}}{{a}^{2}}$,将这个结论类比到双曲线,得出的结论为:P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上异于左右顶点A1,A2的任意一点,则( )
| A. | 直线PA1与PA2的斜率之和为定值$\frac{{a}^{2}}{{b}^{2}}$ | |
| B. | 直线PA1与PA2的斜率之积为定值$\frac{{a}^{2}}{{b}^{2}}$ | |
| C. | 直线PA1与PA2的斜率之和为定值$\frac{{b}^{2}}{{a}^{2}}$ | |
| D. | 直线PA1与PA2的斜率之积为定值$\frac{{b}^{2}}{{a}^{2}}$ |