题目内容

6.[x]表示不超过x的最大整数,如[2.3]=2,[-1.3]=-2,[3]=3,若f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$,则函数g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域为{-1,0}.

分析 先求出函数f(x)的值域,然后求出[f(x)-$\frac{1}{2}$]的值,再求出f(-x)的值域,然后求出[f(-x)-$\frac{1}{2}$]的值,最后求出g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域即可.

解答 解:f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$=1-$\frac{1}{{2}^{x}+1}$∈(0,1),
∴f(x)-$\frac{1}{2}$∈(-$\frac{1}{2}$,$\frac{1}{2}$),
[f(x)-$\frac{1}{2}$]=0 或-1,
∵f(-x)=$\frac{1}{{2}^{x}+1}$∈(0,1),
∴f(-x)-$\frac{1}{2}$∈(-$\frac{1}{2}$,$\frac{1}{2}$),
则[f(-x)-$\frac{1}{2}$]=-1或0,
∴g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域为{0,-1}.
故答案为:{0,-1}.

点评 本题主要考查了函数的值域,同时考查分类讨论的数学思想,分析问题解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网