题目内容

15.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:
货物体积(升/件)重量(公斤/件)利润(元/件)
20108
102010
运输限制110100
在最合理的安排下,获得的最大利润的值为62.

分析 运送甲x件,乙y件,利润为z,建立约束条件和目标函数,利用线性规划的知识进行求解即可.

解答 解:设运送甲x件,乙y件,利润为z,
则由题意得$\left\{\begin{array}{l}{20x+10y≤110}\\{10x+20y≤100}\\{x,y∈N}\end{array}\right.$,即$\left\{\begin{array}{l}{2x+y≤11}\\{x+2y≤10}\\{x,y∈N}\end{array}\right.$,且z=8x+10y
作出不等式组对应的平面区域如图:
由z=8x+10y得y=-$\frac{4}{5}$x+$\frac{z}{10}$,
平移直线y=-$\frac{4}{5}$x+$\frac{z}{10}$,由图象知当直线y=-$\frac{4}{5}$x+$\frac{z}{10}$经过点B时,直线的截距最大,此时z最大,
由$\left\{\begin{array}{l}{2x+y=11}\\{x+2y=10}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即B(4,3),
此时z=8×4+10×3=32+30=62,
故答案为:62

点评 本题主要考查线性规划的应用,设出变量,建立约束条件和目标函数,作出图象,利用线性规划的知识进行求解是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网