题目内容
若x,y满足约束条件
,则目标函数z=x+3y的最大值为 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对于的平面区域,利用数形结合即可得到结论.
解答:
解:作出不等式组对于的平面区域如图:
由z=x+3y,则y=-
x+
,
平移直线y=-
x+
,由图象可知当直线y=-
x+
经过点A时,直线y=-
x+
的截距最大,此时z最大,
由
,解得
,
即A(0,
),
此时zmax=0+
×3=5,
故答案为:5
由z=x+3y,则y=-
| 1 |
| 3 |
| z |
| 3 |
平移直线y=-
| 1 |
| 3 |
| z |
| 3 |
| 1 |
| 3 |
| z |
| 3 |
| 1 |
| 3 |
| z |
| 3 |
由
|
|
即A(0,
| 5 |
| 3 |
此时zmax=0+
| 5 |
| 3 |
故答案为:5
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
若P的Q的北偏东44°50′,则Q在P的( )
| A、东偏北45°10′ |
| B、东偏北45°50′ |
| C、南偏西44°50′ |
| D、西偏南45°50′ |