题目内容

16.根据正弦函数的图象.能使不等式$\sqrt{2}$+2sinx≤0(0∈[0,2π])成立的x的解集为[$\frac{5π}{4}$,$\frac{7π}{4}$].

分析 画出图象得出sinx的图象,根据图象得到不等式的解集.

解答 解:$\sqrt{2}$+2sinx≤0,
∴sinx≤-$\frac{\sqrt{2}}{2}$,
∵sin($\frac{5π}{4}$)=-$\frac{\sqrt{2}}{2}$,sin($\frac{7π}{4}$)=-$\frac{\sqrt{2}}{2}$,
∴$\frac{5π}{4}$≤x≤$\frac{7π}{4}$,
∴不等式$\sqrt{2}$+2sinx≤0(0∈[0,2π])成立的x的解集为[$\frac{5π}{4}$,$\frac{7π}{4}$],
故答案为:[$\frac{5π}{4}$,$\frac{7π}{4}$].

点评 本题考查了是三角函数的性质,图象,不等式,求解含有三角函数的不等式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网