题目内容
.已知向量a=(2cos x,1),b=(cos x,
sin 2x),函数f(x)=a·b.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[
,
]时,若f(x)=
,求f(x-
)的值.
解:(1)f(x)=2cos2x+
sin 2x=2sin(2x+
)+1,
∴T=π.
由2kπ-
≤2x+
≤2kπ+
,得kπ-
≤x≤kπ+
(k∈Z),则f(x)的单调递增区间为[kπ-
,kπ+
](k∈Z).
(2)f(x)=2sin(2x+
)+1=
,则sin(2x+
)=
.
由
≤x≤
,得
≤2x+
≤
,
所以cos(2x+
)=-
=-
,
f(x-
)=2sin(2x+
-
)+1
=2sin(2x+
)cos
-2cos(2x+
)sin
+1
=2×
×
-2×(-
)×
+1
=
.
练习册系列答案
相关题目