题目内容

19.函数f(x)=x3-3x2-9x+1的单调递减区间为(  )
A.(-1,3)B.(-∞,-1)或(3,+∞)C.(-3,1)D.(-∞,-3)或(1,+∞)

分析 由f(x)=x3-3x2-9x+1,知f′(x)=3x2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)<0,能求出函数f(x)的递减区间.

解答 解:∵f(x)=x3-3x2-9x+1,
∴f′(x)=3x2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)<0,得-1<x<3.
∴函数f(x)的递减区间是(-1,3),
故选:A.

点评 本题考查了函数的单调性以及导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网