题目内容
如图:二面角
的大小是
,线段
与
所成角为
,则
与平面
所成角的正弦值是_________ . ![]()
![]()
解析试题分析:过点A作平面β的垂线,垂足为C,
在β内过C作l的垂线.垂足为D
连接AD,有三垂线定理可知AD⊥l,
故∠ADC为二面角α-l-β的平面角,为60°![]()
又由已知,∠ABD=45°
连接CB,则∠ABC为AB与平面β所成的角,设AD=2,则AC=
,CD=1,AB=AD:sin450=2
,∴sin∠ABC=AC:AB=
;故答案为
.
考点:本题主要是考查平面与平面之间的位置关系,以及直线与平面所成角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
点评:解决该试题的关键是过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连接AD,从而∠ADC为二面角α-l-β的平面角,连接CB,则∠ABC为AB与平面β所成的角,在直角三角形ABC中求出此角即可.
练习册系列答案
相关题目