题目内容

19.小张以10元一股的价格购买了一支股票,他将股票当天的最高价格y(元)与第t个交易日(其中0≤t≤24)进行了记录,得到有关数据如表(不考虑股票交易涨跌停规律):
t03691215182124
y/元10.013.09.97.010.013.010.017.010.0
他经过研究后认为单支股票当天的最高价格y(元)是第t个交易日的函数y=f(t),并且认为y=f(t)的曲线可近似地看作函数f(t)=Asinωt+b的图象,请根据小张的观点解决下列问题.
(1)试根据以上数据,求出函数f(t)=Asinωt+b的振幅、最小正周期和表达式;
(2)小张认为当股票价格不低于11.5元时抛售股票比较合理,请问在股票最高价格波动的一个周期内小张有几天可以抛售股票?

分析 (1)根据数据$\left\{\begin{array}{l}{A+b=13}\\{-A+b=7}\end{array}\right.$,可得A=3,h=10,由T=15-3=12,可求ω=$\frac{π}{6}$,将点(3,13)代入可得φ=0,从而可求函数的表达式.
(2)当股票价格不低于11.5元时,即3sin$\frac{π}{6}$t+10≥11.5⇒2kπ$\frac{π}{6}$≤$\frac{π}{6}t≤2kπ+\frac{5π}{6}$⇒12k+1≤t≤12k+5

解答 解:(1)根据数据得数据$\left\{\begin{array}{l}{A+b=13}\\{-A+b=7}\end{array}\right.$,∴A=3,h=10,
T=15-3=12,ω=$\frac{π}{6}$,∴函数的表达式为y=3sin$\frac{π}{6}$t+10(0≤t≤24).
(2)当股票价格不低于11.5元时,即3sin$\frac{π}{6}$t+10≥11.5
⇒2kπ$\frac{π}{6}$≤$\frac{π}{6}t≤2kπ+\frac{5π}{6}$⇒12k+1≤t≤12k+5.∵T=15-3=12,
∴股票最高价格波动的一个周期内小张有5天可以抛售股票.

点评 本题考查了三角函数模型,关键是要求出待定系数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网