题目内容

18.若直线y=2x+b与椭圆$\frac{{x}^{2}}{4}$+y2=1无公共点,则b的取值范围为b$<-2\sqrt{2}$或b$>2\sqrt{2}$.

分析 联立直线与椭圆方程,通过判别式小于0 求解即可.

解答 解:由题意可得:$\left\{\begin{array}{l}{y=2x+b}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,可得:8x2+4bx+b2-4=0,
直线y=2x+b与椭圆$\frac{{x}^{2}}{4}$+y2=1无公共点,
所以:△=16b2-32(b2-4)<0,
-b2+8<0,解得b$<-2\sqrt{2}$或b$>2\sqrt{2}$.
故答案为:b$<-2\sqrt{2}$或b$>2\sqrt{2}$.

点评 本题考查直线与椭圆的位置关系的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网