题目内容

设F1、F2为椭圆
x2
4
+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于(  )
A、0B、2C、4D、-2
分析:通过题意可推断出当P、Q分别在
PF1
椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得
PF1
PF2
,则
PF1
PF2
的值可求得.
解答:解:根据题意可知当P、Q分别在
PF1
椭圆短轴端点时,四边形PF1QF2面积最大.
这时,F1(-
3
,0),F2
3
,0),P(0,1),
PF1
=(-
3
,-1),
PF2
=(
3
,-1),
PF1
PF2
=-2.
故选D
点评:本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网